
| INVESTIGATION

WormCat: An Online Tool for Annotation and
Visualization of Caenorhabditis elegans

Genome-Scale Data
Amy D. Holdorf,* Daniel P. Higgins,† Anne C. Hart,‡ Peter R. Boag,§ Gregory J. Pazour,**

Albertha J. M. Walhout,*,** and Amy K. Walker**,1

*Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, †Department of
Computer Science, Georgia Technical University, Atlanta, Georgia 30332-0765, ‡Department of Neuroscience, Robert J. and

Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, §Department of Biochemistry and
Molecular Biology, Monash University, 3800 Clayton Australia, and **Program in Molecular Medicine, University of Massachusetts

Medical School, Worcester, Massachusetts 01605

ORCID IDs: 0000-0002-4660-354X (D.P.H.); 0000-0001-7239-4350 (A.C.H.); 0000-0002-0889-0859 (P.R.B.); 0000-0002-6285-8796 (G.J.P.);
0000-0001-5587-3608 (A.J.M.W.); 0000-0003-1899-8916 (A.K.W.)

ABSTRACT The emergence of large gene expression datasets has revealed the need for improved tools to identify enriched gene
categories and visualize enrichment patterns. While gene ontogeny (GO) provides a valuable tool for gene set enrichment analysis, it
has several limitations. First, it is difficult to graph multiple GO analyses for comparison. Second, genes from some model systems are
not well represented. For example, �30% of Caenorhabditis elegans genes are missing from the analysis in commonly used databases.
To allow categorization and visualization of enriched C. elegans gene sets in different types of genome-scale data, we developed
WormCat, a web-based tool that uses a near-complete annotation of the C. elegans genome to identify coexpressed gene sets and
scaled heat map for enrichment visualization. We tested the performance of WormCat using a variety of published transcriptomic
datasets, and show that it reproduces major categories identified by GO. Importantly, we also found previously unidentified categories
that are informative for interpreting phenotypes or predicting biological function. For example, we analyzed published RNA-seq data
from C. elegans treated with combinations of lifespan-extending drugs, where one combination paradoxically shortened lifespan.
Using WormCat, we identified sterol metabolism as a category that was not enriched in the single or double combinations, but
emerged in a triple combination along with the lifespan shortening. Thus, WormCat identified a gene set with potential. phenotypic
relevance not found with previous GO analysis. In conclusion, WormCat provides a powerful tool for the analysis and visualization of
gene set enrichment in different types of C. elegans datasets.
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RNA-SEQ is an indispensable tool for understanding how
gene expression changes during development or upon

environmental perturbations. As this technology has become
less expensive and more robust, it has become more com-
mon to generate data from multiple conditions, enabling

comparisons of gene expression profiles across biological
contexts. The most commonly used method to derive infor-
mation on the biological function of coexpressed genes is gene
ontology (GO) (TheGeneOntologyConsortium2019) (Ashburner
et al. 2000), where annotation for each gene follows three ma-
jor classifications: Biological Process, Molecular Function, or
Cellular Component. For example, the Biological Process class
refers to genes included in a process that an organism is pro-
grammed to execute, and that occurs through specific regu-
lated molecular events. Molecular Function denotes protein
activities, and Cellular Component maps the location of activ-
ity. Within each of these classifications, functions are broken
down in parent–child relationships with increasing functional
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specificity (Figure 1A). However, child classes can be linked
to different parent classes, making statistical analysis not
straightforward. For example, the child class phospholipid
biosynthetic process can be linked to both of the parent group-
ingsmetabolic process and cellular process. Thus, GO provides
multiple descriptors per gene. Although GOwas developed to
compare gene function across newly sequenced genomes, it
became apparent that it could also be used to identify shared
functional classifications within large-scale gene expression
data (Eisen et al. 1998; Spellman et al. 1998). Currently,
multiple web-based servers that use different statistical tests
can be used to determine the enrichment of GO terms for a
gene set of interest. For example, PANTHER (www.pantherdb.
org) provides enriched GO terms determined by Fisher’s Exact
Test with a Benjamini-Hochberg false discovery rate (FDR)
correction for 131 species (Mi et al. 2019). Because the mul-
tiplicity of GO term parent–child relationships can produce
complex data structures, specialized ontologies such as
GO-Slim use a restricted set of terms, searching biological
processes as default (Mi et al. 2019). P-values provide rele-
vance for enriched GO terms. Visualization of gene set enrich-
ment data are important for identifying critical elements and
communication of information. PANTHER provides pie or bar
charts of individual searches (Mi et al. 2019). The GOrilla plat-
form generates tables of P-values (Eden et al. 2009) and links to
another service, REVIGO, that uses semantic graphs to visualize
GO terms data (Supek et al. 2011). Thus, the GO databases
provide a widely used platform for classifying, comparing, and
visualizing functional genomic data. However, as outlined be-
low, GO is of limited use for the analysis of Caenorhabditis ele-
gans data and visualization of multiplexed datasets.

The nematode C. elegans has been at the forefront of ge-
nomics research. It was the first metazoan organism with
a completely sequenced genome (Caenorhabditis elegans
Sequencing Consortium 1998). After the discovery of RNA in-
terference (RNAi) (Fire et al. 1998), multiple RNAi libraries
were developed for performing genome-wide knockdown
screens (Kamath et al. 2003;Rual et al. 2004). Gene expression
profiling studies using microarrays or RNA-seq have compared
gene expression in sex-specific, developmental/aging-related,
specific gene deletion, tissue-specific, and dietary or stress-
related animal conditions (Reinke et al. 2000; Hillier et al.
2005; Baugh et al. 2009; Oliveira et al. 2009; Deng et al. 2011;
Schwarz et al. 2012; Bulcha et al. 2019). While GO has been
used extensively to analyzeC. elegans gene expression profiling
data, it has several limitations. First,�30% of C. elegans genes
are not annotated in GO databases (Ding et al. 2018), exclud-
ing these genes from the analysis. Thus, these genes are arbi-
trarily excluded from enrichment statistics. Second, the
visualization of enrichment data from comparative RNA-seq
datasets is difficult, and this is true not only for C. elegans
datasets but for gene expression profile comparisons in any
organism. Most users display the output data as lists with
P-values (MacNeil et al. 2013) or as pie or bar charts (Ding
et al. 2015), which are challenging to multiplex for compar-
ison of multiple datasets. Finally, it can be challenging to

determine which input genes are associated with a given GO
classification, which is critical for interpreting the accuracy
and biological importance of enriched gene sets.

We constructed a web-based gene set enrichment analysis
tool we named WormCat (WormCatalog) that works indepen-
dently from GO to identify potentially coexpressed or cofunc-
tioning genes in genome-wide expression studies or functional
screens. WormCat (www.wormcat.com), uses a concise list of
nested categories where each gene is first assigned to a cate-
gory based on physiological function, and then to a molecular
function or cellular location. WormCat provides a scaled bub-
ble chart that allows the visualization and direct comparison of
complex datasets. The tool also provides csv files containing
input gene annotations, P-values from Fisher’s exact tests, and
Bonferroni multiple hypothesis testing corrections. We used
WormCat to identify functional gene sets in published gene
expression data and large-scale RNAi screens. WormCat repro-
ducibly identified prior GO classifications, and provided an
easy way to interpret visualization that enables the facile and
intuitive comparison of multiple published datasets. We also
identified new groups of enriched categories with potentially
important biological significance, showing that WormCat pro-
vides enrichment information not revealed by GO. Taken to-
gether,WormCat offers an alternative and complementary tool
for categorizing and visualizing data for genome-wide C. ele-
gans studies, and may provide a platform for similar annota-
tions in other model organisms and humans.

Materials and Methods

Annotations

WormBase version WS270 was used to provide WormBase
descriptions and provide phenotype information.

Scripts

The processed data were analyzed using R version 3.4.4
(2018-03-15), and depends on the following R packages:
datasets, graphics, grDevices, methods, stats, utils, ggplot2,
plot flow, scales, ggthemes, pander, data.table, plyr, gdtools,
svglite, and FSA.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article. The code and annotation lists are available
under MIT Open Source License, and can be downloaded
from the GitHub repository https://github.com/dphiggs01/
wormcat alongwith version-control information. Alternatively,
WormCat can be installed directly as an R package using the
devtools library. Supplemental material has been deposited at
figshare and includes 12 supplemental figures and 14 supple-
mental tables. Supplemental material available at figshare:
https://doi.org/10.25386/genetics.10312070.

GO searches: Genes listswere entered as test sets intoGOrilla
(http://cbl-gorilla.cs.technion.ac.il/) (Eden et al. 2009) with
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the WormCat annotation list used as background so that the
same background set was used when comparing WormCat
and GOrilla. “All” was selected for ontogeny choices, and the
P-value thresholds were set to 1023. Output selections were
Microsoft Excel and REVIGO (Supek et al. 2011).

Results

C. elegans gene annotation

The C. elegans genome encodes �19,800 protein-coding
genes, �260 microRNAs, and numerous other noncoding
RNAs (WormBase version WS270). We annotated all C. ele-
gans genes first based on physiological functions, and, when
these functions were unknown or pleiotropic, according to
molecular function or subcellular location (see Supplemental
Material, Table S1 for annotations, Table S2 for Category
definitions). Our annotations are structured as nested cate-
gories, enabling classification into broad (Category 1; Cat1),
or more specific categories (Category 2 or 3; Cat2 or Cat3).
This annotation has the advantage of including information

from multiple sources in addition to GO. For example, we
used phenotype information available in WormBase (Lee
et al. 2018) for Cat1 assignments. Importantly, the pheno-
typic data present in WormBase (Lee et al. 2018) was used
only if phenotypes were: (1) derived from wild type animals,
(2) examined in detail in peer-reviewed publications, and (3)
represented in two independent screens. If a gene was as-
cribed a clear physiological function with these criteria, we
assigned it to a physiological category, examples of which
include Stress response, Development, and Neuronal function.
If gene products havemultiple functions within the cell, act in
multiple cells type, or different developmental times, we pri-
oritized assignment to molecular categories. Molecular cate-
gories harbor both genes whose products comprise molecular
machines, as well as the chaperones or regulatory factors that
are necessary for the function of such machines. We used
information on the molecular function of human orthologs
to classify C. elegans genes that had not been molecularly
defined in nematodes, and were highly similar in BLAST
scores. For example, we classified the C. elegans gene
W03D8.8 in Metabolism: lipid: beta-oxidation based on a

Figure 1 WormCat annotates and visualizes C. ele-
gans gene enrichment from genome-scale data. (A)
Diagram comparing the parent–child methods for
linking GO terms with the nested tree strategy used
for annotating C. elegans genes in WormCat. (B)
Screenshot of the WormCat web page showing
the data entry form. (C) Flow chart diagraming steps
and outputs from the WormCat program. Data out-
puts are in tabular comma-separated values (CSV)
and scalable vector graphics (SVG) formats. (D) Leg-
end for scaled bubble charts showing the number
of genes referenced to size and P-value referenced
to color. In graphs, Category 1, 2, and 3 are differ-
entiated by capitalization, size, and italics. (E) Leg-
end for sunburst plots showing concentric rings
visualizing Category 1, 2, and 3 data.
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BLAST score of e = 7 3 10237 and similarity over 92% of its
length to human ACOT4 (acyl-CoA thioesterase 4). For genes
with weaker homology to human genes, we further refined
assignments using BLAST (Altschul et al. 1990) and the NCBI
Conserved Domain server (Marchler-Bauer et al. 2017). We
used these tools to determine if there was significant homol-
ogy or shared domains between C. elegans and human pro-
teins, then used information in UniProt (www.uniprot.org)
for the human proteins to determine molecular classifica-
tion. For example, we placed the C. elegans gene T26E4.3
in Protein modification: carbohydrate-based on a BLAST core
of e = 4 3 1027 over 95% of its length to human alpha
fucosyltransferase 1, and identification of a Fut1_Fut2-like
domain by the NCBI conserved domain server with an e score
of 6.16 3 10236. However, while the gene BE10.3 is re-
ferred to in the WormBase description as an ortholog of hu-
man FUT9 (fucosyltransferase (9) (Table S1), we found no
homology to human genes by NCBI BLAST or domain con-
servation across all organisms with the NCBI Conserved Do-
main server. Therefore, we classified BE10.3 in Unknown.
Finally, if no biological or molecular function could be
assigned, protein subcellular localization was used for anno-
tation. For example, a protein with a predicted membrane-
spanning region that lacks characterization as a receptor
would be placed in Transmembrane protein. Genes with no
functional information were classified as Unknown (Cat1). A
total of 8160 genes lacked sufficient information for classifi-
cation in physiological, molecular, or subcellular localization
categories, and were classified in Unknown. Many of these
genes are C. elegans- or nematode-specific; however,
some have homology to human genes of unknown function.
WormBase also aggregates microarray and RNA-seq informa-
tion, and annotates genes that respond to pharmacological
treatments (Lee et al. 2018). We also used this information to
differentiate genes within Unknown: regulated by multiple
stresses that respond to at least two commonly used stressors.
This classification does not imply that these genes have a
function in the stress response. It does allow identification
of genes with otherwise unknown functions that are common
responders to stress. This classification may be useful to dis-
tinguish RNA-seq datasets that respond similarly to pharma-
cological stressors or can serve as a source to identify specific
genes of interest for additional study. We also included pseu-
dogenes and noncoding RNAs in our annotation list. These
genes commonly appear in RNA-seq data; including them in
the annotation list allows them to be labeled within the user’s
input dataset. In this way, we were able to leverage multiple
data sources to categorize C. elegans genes into potentially
functional biological groups.

WormCat.com allows web-based searches of input
genes and generates scaled bubble charts and gene lists

WormCat.com maps annotations to input genes then deter-
mine category enrichment for Cat1, Cat2, and Cat3 (Figure
1B). Determination of category enrichment in a gene set of
interest compared to the entire genome can rely on several

commonly used statistics such as the Fisher’s exact test and
the Mann-Whitney test (Mi et al. 2019). We used Fisher’s
exact test to determine if categories were over-represented
because it is accurate down to small sample sizes, which may
occur in high-resolution classifications (McDonald 2014).
In addition, we included the Bonferroni FDR correction
(McDonald 2014). To determine the number of false posi-
tives after Fisher’s test or the FDR correction, we tested ran-
domized gene lists of 100, 500, 1000, or 1500 genes and
found that small numbers of genes were returned using a
P-value cut-off of 0.05 (for, example 5 genes were returned
on the 1000 gene random set). Few genes were returned
from any of the randomized sets using an FDR cutoff of
0.01 (Table S3). Because an FDR ,0.01 is relatively strin-
gent, Fisher’s exact test P-values will also be provided, allow-
ing users to make independent evaluations on the statistical
cut-offs.

The WormCat website (www.wormcat.com) provides
gene enrichment outputs in multiple formats (Figure 1C).
First, all input genes are listed with mapped annotations
(rgs_and_categories.csv). Genes that matched at least one
Cat1, Cat2, and Cat3 classification are returned with Fisher’s
exact test P-values (Cat1.csv, Cat2.csv, or Cat3.csv). Next,
Cat1, Cat2, and Cat3 matches with an FDR correction of
,0.01 are returned as CSV files named Cat1.apv, Cat2.apv,
and Cat3.apv (appropriate P-value). Finally, the Cat.apv files
are used to generate two types of graphical output. First, it
constructs scaled heat map bubble charts (Cat1., Cat2.,
Cat3.sgv) where color signifies P-value, and size specifies
the number of genes in the category (Figure 1D). The scaling
for these graphs is fixed so that multiple datasets can be
graphed together. Second, a sunburst graph is built with con-
centric rings of Cat1, Cat2, and Cat3 values (Figure 1E). In
these graphs, rings sections correspond to categories, with
section sizes proportional to numbers of genes in the cate-
gory. On thewebsite, each ring section is clickable to generate
a subgraph-based division within a section. For example,
clicking a single Cat1 sectionwould generate a subgraphwith
all the Cat2 and Cat3 subdivisions located within. This graph-
ical output is likely to be most useful for visualization of a
single RNA-seq dataset, or genetic screening data. Thus,
WormCat provides multiple outputs to allow inspection
of individual input genes, generation of gene tables, and P-
values, and graphical visualization of enrichments.

Comparison of GO and WormCat analysis of
sams-1(RNAi) enrichment data

To determine the utility of theWormCat annotations, we first
analyzed microarray data we had previously generated to
compare gene expression changes after knockdownof sams-1,
with and without dietary supplementation of choline (Ding
et al. 2015). sams-1 encodes an S-adenosylmethionine (SAM)
synthase, which is an enzyme that produces nearly all of the
methyl groups used in methylation of histones and nucleic
acids, in addition to the production of the membrane phos-
pholipid phosphatidylcholine (PC) (Mato and Lu 2007).
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sams-1 RNAi or loss-of-function (lof) animals have extended
lifespan (Hansen et al. 2005), increased lipid stores (Walker
et al. 2011), and activated innate immune signatures (Ding
et al. 2015). sams-1 animals have low PC (Walker et al.
2011), but those levels are restored with supplementation
of choline (Ding et al. 2015), which supports SAM-independent
phosphatidylcholine synthesis (Vance 2014) (Figure 2A).
Gene expression changes in sams-1(RNAi) animals could
result from a perturbation in different SAM-dependent path-
ways. To determine which transcriptional changes occurred
downstream of alterations in PC synthesis, we performed
microarrays with RNA from sams-1(RNAi) and sams-1(RNAi)
animals supplemented with choline; 90% of genes that
changed in expression in sams-1(RNAi) animals returned to
wild-type levels after choline supplementation. Therefore,
the expression of the remaining 10% of genes was altered
by sams-1 RNAi independently of phosphatidylcholine levels
(Ding et al. 2015).

In order to identify GO terms enrichment with WormCat,
we submitted genes up- or downregulated twofold ormore in
sams-1(RNAi) animals to both WormCat and GOrilla (Eden
et al. 2009).We used REVIGO (Supek et al. 2011) to visualize
GO output. Both GOrilla/REVIGO (Figure 2B, Figure S2, A
and B, and Table S4) and WormCat (Figure 2C and Table
S5) identified categories of stress-response and metabolism
linked to lipid accumulation in the genes that are upregulated
upon sams-1 RNAi, which is in agreement with our previous
analysis (Ding et al. 2015). Interestingly, the relative impor-
tance of lipid metabolism is different in the two analyses. In
the WormCat analysis, Metabolism: lipid was the third most
enriched Cat2 category with a P-value of 1.2 3 1029 (Table
S5). In the GO analysis, however, lipid metabolic process was
found with a modest enrichment of FDR corrected P-value =
5 3 1022 (Table S4). WormCat identified 41 genes in the
Metabolism: lipid category, whereas GOrilla’s GO term search
identified 33 genes in lipid metabolic process (Figure 2E and
Table S4). Further inspection showed that six of the genes
identified by solely by GOrilla were phospholipid lipases or
phosphatases, one was an undefined hydrolase with no do-
main similarity to genes with known lipid functions, and one
was a transmembrane protein. Each of these genes may be
better classified in other categories (see Table S4 for GO lipid
genes annotated by WormCat, tab 5 “GO_lipid_sams_up”).
For example, lipases that hydrolyze phospholipids are the
endpoints of metabolic pathways but produce second mes-
sengers acting in signaling pathways. One of these genes,
Y69A2AL.2, has significant similarity to the human phospho-
lipase A2 gene, PLA2G1B (BLAST e score of 23 10211). This
class of phospholipases cleave 3-sn-phosphoglycerides to pro-
duce the signaling molecule arachidonic acid (Xu et al.
2009); therefore, a classification of Signaling is likely more
reflective of its biological function than Metabolism: lipid.
Taken together, WormCat identifies more genes that are
directly relevant to the increased lipid storage phenotype
observed with sams-1(RNAi) or (lof) animals (Walker et al.
2011; Smulan et al. 2016).

Next, we compared WormCat analysis of sams-1(RNAi)
upregulated genes to the Gene Set Enrichment Analysis
(GSEA) tool located in the WormBase suite (Angeles-Albores
et al. 2016). GSEA, a GO-based tool, identified similar cate-
gories as GOrilla, with a concurrently high score for the lipid
catabolic process (Figure S1). Our test set included 773 genes
(Table S5, tab4); however, 286 of these genes were excluded
from the GSEA analysis (Table S6), similar to the percentage
excluded in a GOrilla analysis (Ding et al. 2018). Unlike
GOrilla, GSEA provides the user with gene IDs of excluded genes
(Table S6). Therefore, we asked if these genes were excluded
because their functions were undefined, or if they were instead
capable of classification. We found that 118 of the 286 ex-
cluded genes were classified as Unknown by WormCat (Table
S6). However, 92 of the 476 genes GSEA included were also
Unknown in WormCat analysis (Table S5, tab 4). Thus, genes
within this set that are classified as Unknown by WormCat only
partially overlap with genes excluded from GO analysis. Fur-
thermore, WormCat classified 117 genes within the 286
genes excluded from GSEA, with 16 in noncoding categories
and the remaining 101 in protein-coding categories such as
Cytoskeleton, Metabolism, and Proteolysis: proteasome (Table
S6). Thus, analysis of genes excluded from GO shows that
an important fraction can be annotated and that Unknown
WormCat categories are represented in both genes included
and excluded from GO analysis.

Next,weusedWormCat to analyze genes downregulated in
sams-1(RNAi) animals. We noted enrichment in Development:
germline and mRNA function categories in sams-1(RNAi) ani-
mals, and that this enrichment is lost with choline treatment
(Figure S2D and Table S5). This is consistent with the reduc-
tion in embryo production after sams-1(RNAi), and the rescue
of fertility when choline supplementation restores PC levels
(Walker et al. 2011; Ding et al. 2015). Stress response cate-
gories, however, are enriched in downregulated genes from
both sams-1(RNAi) and sams-1(RNAi) choline-treated animals
(Figure S2C and Table S5). This appears to contrast with the
complete loss of enrichment after choline treatment in the
upregulated stress-response genes (Figure 2C and Table S5).
However, an inspection of the annotated gene lists returned by
WormCat shows that the individual genes within the down-
regulated Stress response category are different (Figure S2E
and Table S5). Thus, on a gene by gene level, this data shows
that the effects of choline supplementation are distinct for the
up- and downregulated genes in the Stress response category.
In addition, this demonstrates that, by providing both gene set
enrichment and annotation of individual genes,WormCat pro-
vides a level of analysis that is difficult to achieve by traditional
GO methods.

Tau-tubulin kinases family are enriched in
spermatogenic germlines

C. elegans is a robust model system for studying development
and differentiation. The study of hermaphrodite germline
development has been of particular interest, as it first pro-
duces sperm, after which it switches to oocyte production
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(Hubbard and Greenstein 2005). This concurs with distinct
gene expression programs for both processes (Greenstein
2005; L’hernault 2006). Recently, the Kimble laboratory per-
formed RNA-seq on dissected germlines from genetically
female [fog-2(q71)] and genetically male [fem-3(q96)] ani-
mals (Ortiz et al. 2014) (Figure 3A). Genes expressed in
both germlines were called gender-neutral (GN), in contrast
to genes that are specific to female (Oo, oogenic) or male (Sp,
spermatogenic) germlines (Ortiz et al. 2014). We used
WormCat to determine enrichment categories in each data-
set. We found that GN genes are strongly enriched for
growth, DNA, transcription, and mRNA functions (Figure
3B and Table S7), which is expected because the germline
is undergoing extensive mitotic and meiotic divisions. We
further found that Chromosome dynamics and Meiotic func-
tions were enriched in the GN dataset (Figure 3C and Table
S7), as were mRNA functions of Processing and Binding (Fig-
ure 3D and Table S7). Oo genes were enriched for mRNA
binding proteins, especially the zinc finger (ZF) class
(Figure 3D and Table S7). These include such as maternally

deposited oma-1, pie-1, pos-1, and mex-1, mex-5, and mex-6
mRNAs, which are known to function in oocytes (Lee and
Schedl 2006) (Table S7). ZF proteins with unknown nucleic
acid binding specificity were also enriched in the Oo dataset
(Figure 3D and Table S7), suggesting that many of these
may also be produced in the maternal germline. In an inde-
pendent dataset comparing RNA from germline-less [glp-
4(bn2)], oocyte [fem-3(gof)] and sperm-producing [fem-1(lof)]
animals by microarray analysis (Reinke et al. 2000), we also
observed enrichment in categories for mRNA functions, tran-
scription, development, and cell cycle control (Figure S3, A–D
and Table S8).

As expected, Sp genes are enriched for Major Sperm Pro-
teins (MSPs), which are necessary for sperm crawling (Figure
3B and Table S7). Interestingly, a class of potential cyto-
skeletal regulators, tau-tubulin kinases (TTKs), were also
enriched in Sp genes (64 of 71, P-value of 8.8 3 10234)
(Figure 3E and Table S7). One TTK, spe-6, was previously
isolated in a screen for spermatogenesis defects, and is
thought to be involved in phosphorylation of MSPs to allow

Figure 2 WormCat verifies known category enri-
chments sams-1(RNAi) upregulated genes. (A) Sc-
hematic showing metabolic pathways linking
methionine, SAM, choline, and phosphatidylcholine
production. Gene expression microarray data for
(B–D) were obtained from Ding et al. (2015). (B)
Semantic plot of GO enriched classifications gener-
ated by REVIGO (Supek et al. 2011) from sams-
1(RNAi) Up genes. (C) WormCat visualization of
categories enriched in genes upregulated in sams-
1(RNAi) animals with and without choline supple-
mentation in order of Cat1 strongest enrichment.
Categories 2 and 3 are listed under each Category
1, with Category 2 or 3 sets that appeared indepen-
dently of a Category 1 listed last. Bubble heat plot
key is the same as Figure 1D. (D) sams-1(RNAi) Up
plus choline (Ch) genes visualized by REVIGO. (E)
Venn diagram showing overlap between WormCat
Metabolism: lipid and GO Lipid process gene anno-
tations. ABC, ATP-Binding Cassette; Ch, Choline;
CUB, Complement C1r/C1s, Uegf, Bmp1 domain;
EC Material, Extracellular Material; NHR, Nuclear
Hormone Receptor; Prot General, Proteolysis Gen-
eral; Prot Proteasome, Proteolysis Proteasome;
SAM, S-adenosylmethionine; TM Transport, Trans-
membrane Transport; ugt, UDP-glycosyltransferase
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the sperm to crawl (Varkey et al. 1993). Underscoring the
potential importance of the TTKs in the male germline,
WormCat also produced an enrichment in tau tubulin kinases
in the Reinke et al. (2000) spermatogenic gene sets (Figure
S3E and Table S8). Thus, WormCat has identified a class of
kinases that may be important for sperm-specific functions
(Figure 3F).

To directly compare gene set enrichment from WormCat
and GO, we analyzed each of these germline-enriched data-
sets with GOrilla and used REVIGO (Supek et al. 2011) for
visualization (Figure S4, A–C, Figure S5, A and B, Table S7,
and Table S8). For the GN genes, the top 5 of the 544 signif-
icantly enriched categories were nucleic acid metabolic
process (GO:0090304), nucleobase-containing compound
metabolic process (GO:0006139), heterocycle metabolic pro-
cess (GO:0046483), cellular aromatic compound metabolic
process (GO:0006725), and organic cyclic compound meta-
bolic process (GO:1901360) (Figure S4A and Table S7, see
tabs 7, 8). These GO categories are highly overlapping and
linked to multiple general processes involving nucleic acids.
One gene GO:0006139, gut-2, an LSM RNA binding protein,

was present in 23 different GO categories (Table S7). A com-
parison of these GO categories found that each contains
genes placed in distinct WormCat categories. For example,
gut-2 was placed inmRNA Functions in WormCat, ama-1, the
RNA Pol II large subunit, placed in Transcription: General
Machinery, brc-1, the BRCA1 ortholog, placed in DNA and
nsun-5, a mitochondrial RNA methyltransferase placed in
Metabolism: mitochondria. These WormCat categories are
the top five identified in the GN dataset (Figure 3B and Table
S7). Thus, while WormCat and GO are both identify nucleic
acid-related processed as among the most highly enriched in
the GN dataset, the WormCat data are more concise and
easily aligned with the molecular processes.

Within the spermatogenic datasets fromOrtiz et al. (2014)
and Reinke et al. (2000), WormCat identified a class of ki-
nases, tau tubulin kinases (TTKs), that have the potential to
function in sperm motility. General categories of phosphorus
metabolic process (GO:0006793), phosphate-containing
compound metabolic process (GO:0006796), and peptidyl-
threonine phosphorylation (GO:0018107) were among
the top five most enriched categories by GO from the

Figure 3 Analysis of germline-specific RNA-seq
data identifies the tau tubulin kinase family as
a male-specific category. (A) Schematic showing
germlines used for female (top) or male (bottom)-
specific RNA-seq analysis from Ortiz et al. (2014)
and the mutant alleles to cause these phenotypes.
(B) WormCat Category 1 analysis of Germline neu-
tral (GN), Oogenic (Oo), or Spermatogenic (Sp) data-
sets ordered by most enriched in GN data. (C–E)
Breakdown of WormCat enrichment from the Cat-
egory 1 level for Cell Cycle (C), mRNA Functions and
Nucleic Acid (D), and Cytoskeleton (E). Bubble heat
plot key is the same as Figure 1D. (F) Schematic
showing predicted phosphorylation and organiza-
tion of MSPs during C. elegans sperm maturation
based on WormCat findings. APC, Anaphase Pro-
moting Complex; Chr Dynamics, Chromosome Dy-
namics; mRNA Func., mRNA Function; MSP, Major
Sperm Protein; Phos, Phosphorylation; Protein Mod,
Protein Modification; Prot Proteasome, Proteolysis
Proteasome; RBM, RNA Binding Motif; TTK, Tau Tu-
bulin Kinase; TM Transport, Transmembrane Trans-
port; Trans: GenMach, Trans: Chromatin, Transcription:
Chromatin; Transcription: General Machinery; Trans
Factor, Transcription Factor; ZF, Zinc Finger
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Spermatogenic dataset; however, the TTKs as a group were
not selectively identified from these very broad signaling cat-
egories in either spermatogenic data set (Table S7 and Table
S8). Thus, WormCat provided advantages over GO in the
germline data sets by providing less redundant, and more
easily interpreted, data, and, most importantly, by identifying
novel categories with potential links to biological function.

Identification of postembryonic tissue-specific gene
expression categories

Improved technologies for cell-type-specific marker expres-
sion, nematodedisruption, anddeep sequencing of small RNA
quantities have allowed construction of gene expression data-
sets from larval (Spencer et al. 2011) and adult (Kaletsky
et al. 2018) somatic tissues. To generate data from larval cell
types, the Miller laboratory used cell-type-specific tagged
green fluorescent proteins to label a wide variety of larval
tissues, and examined mRNA expression in tiling microarrays
(Spencer et al. 2011). RNA from each cell type would
include tissue-specific, broadly expressed, and ubiquitously
expressed genes. To define cell-type specific transcripts,
Spencer et al. (2011) designated selectively enriched genes
as expressed more than twofold vs. the whole animal and
as present in a few cell types (Spencer et al. 2011). First,
we performed WormCat analysis on the selectively enriched
gene sets, and found distinct gene set enrichments for each
tissue type (Figure 4A and Table S9). For instance, body
wall muscle (BWM) was enriched for Muscle Function and
Cytoskeleton (Figure 4B and Table S9). The category
Metabolismwas enriched in both intestine (Int) and hypoder-
mis (Hyp), whereas Stress responses appeared more specific
for the intestine, and Extracellular material for the hypoder-
mis (Figure 4, B and C and Table S9). This likely reflects the
role of the intestine in mediating contact with the bacterial
diet, and the importance of the hypodermis for cuticle forma-
tion. While metabolic genes are expected to be required
across multiple cell types, some cell types have specialized
metabolic requirements. Lipid metabolism gene enrichment
appeared at the Cat2 level in both intestine and hypodermis.
However, Cat3 analysis shows that sterol and sphingolipid
genes drive this enrichment in the intestine, while hypoder-
mal lipid enrichment involves more broad categories,
with minor enrichments in Metabolism: lipid: binding and
Metabolism: lipid: lipase (P-values of 4.51 3 10204 and
2.86 3 10204, which did not satisfy the FDR cutoff) (Figure
4D and Table S9). The Cat1 level analysis showed strong
enrichment of transmembrane (TM) transporters in all tis-
sues, including the intestine, excretory cells, and in neurons;
however, the Cat2 level shows enrichment of distinct classes
of transporters (Figure 4B and Table S9) aligning with func-
tions such as nutrient uptake, waste processing, and channel
activity in each of these cell types.

Next, we examined the data from Kaletsky et al. (2018),
who performed RNA-seq from adult C. elegans sorted for
muscle (Mus), intestinal (Int), hypodermal (Hyp), and
neurons (Figure 4E and Table S10). They computationally

separated genes to distinguish expression specificity, demark-
ing “enriched,” “unique,” and “ubiquitously” expressed cate-
gories. We used the “enriched” gene sets in WormCat
analysis, and found that WormCat correctly mapped muscle
or neuronal genes to those cell types (Figure 4F and Table
S10). At the Cat1 level, Extracellular material was enriched
in muscle, hypodermis, and intestine (Figure 4F and Table
S10). At the Cat2 levels, Extracellular material diverged with
matrix showing enrichment in muscle and collagen, showing
enrichment in intestine and hypodermis (Figure 4G and Ta-
ble S10). However, the collagen genes enriched in intestine
and hypodermis were distinct (Figure 4G and Table S10),
perhaps reflecting differing roles for these collagens in the
cuticle vs. in basement membranes. Distinguishing individual
genes for this comparison is very cumbersome in commonly
used GO servers, and, therefore, represents an advantage of
using WormCat. Previous studies found that two intestinal
basement membrane collagens were produced in nonhypo-
dermal tissues (Graham et al. 1997); however, this data sug-
gests that the intestine others could produce others locally.
Kaletsky et al. (2018) also noted enrichment of metabolic
function in adult hypodermis with GO analysis. Metabolic
gene enrichment was also detected by WormCat analysis of
their data (Figure 4H and Table S10), as well as in the larval
data from Spencer et al. (2011) (Figure 4D and Table S9).

In our annotation strategy, we chose to restrict genes in
categories such as Neuronal function to those that are specific
to that tissue, and that have a described physiological func-
tion. Genes that functioned in neurons, as well as other tis-
sues, were placed in more general molecular function-based
categories. With this approach, we hoped to reduce false-
positive identification of neuronal categories outside the
nervous system, yet permit the identification of related, yet
functionally less-specific groups. For example, while the
WormCat analysis of the neuronal tissues in the Spencer
et al. (2011) and Kaletsky et al. (2018) datasets showed
strong enrichment of neuronal-specific categories, it also in-
cluded categories of genes likely to function in both neurons
and other tissues, or that contained genes that had not yet
been classified in vivo. These categories include Metabolism:
insulin (Figure 4, D and H and Table S10), Transmembrane
(TM) transport, Signaling (Figure 4, B and F and Table S10),
and Transmembrane protein (Figure 4B and Table S10). This
is in line with the analysis by both Kaletsky et al. (2018) and
Ritter et al. (2013).

In order to distinguish the utility of WormCat from GO for
the tissue-specific Spencer et al. (2011) and Kaletsky et al.
(2018) datasets, we used GOrilla (Eden et al. 2009) to gen-
erate GO analysis, and visualized the data with REVIGO
(Supek et al. 2011) (Figure S6, Figure S7, Figure S8, Table
S9, and Table S10). There were many similarities between
the categories. For example, categories linked to the
Cytoskeleton are highly enriched in the muscle datasets from
Kaletsky et al. (2018) by GOrilla and WormCat (Figure 4F,
Figure S7A, and Table S10). In another example, Stress re-
sponse categories were highly enriched by bothWormCat and
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GO in the larval (Spencer et al. 2011) and adult (Murphy
et al. 2003) intestine (Figure 4F, Figure S6B, Figure S7B,
and Table S10). However, as shown above, WormCat identi-
fied the insulin gene family as strongly enriched in both larval
(Figure 4D) and adult (Figure 4H) neuronal tissue. Insulins
were not identified as a class by our GO analysis. Instead,
they were distributed among less specific categories such as
biological regulation (GO:0065007), regulation of biological
process (GO:0050789), and regulation of cellular process
(GO:0050794) (Figure S5, Figure S6, Table S9, and Table
S10). Thus, WormCat finds the major categories shown by
GOrilla in the tissue-specific data, and also identifies addi-
tional enriched groups.

The seven transmembrane (7TM) protein family in C. ele-
gans presented an annotation challenge. This class comprises
�8% of all protein-coding genes that seem likely to function
in neurons, yet whose functions are undescribed (Robertson
and Thomas 2006). Some have significant homology tomam-
malian G protein-coupled receptors (GPCRs), while others
are nematode or C. elegans specific (Robertson and Thomas

2006). In order to identify and classify these proteins as ac-
curately as possible, GPCRs with strong evidence for neuron-
specific activity were placed in Neuronal function, while all
other potential GPCRs were classified by protein domain and
homology. For developing a list of potential GPCRs, we se-
lected genes identified in WormBase as containing a trans-
membrane domain as well as those we initially annotated as
GPCRs in the Signaling category. To recover any genesmissed
by these approaches, we added all Unknown proteins from
our annotation list. We submitted the protein sequences for
these genes to the NCBI Conserved Domain search tool
(Marchler-Bauer et al. 2017), and selected all the genes in
these groups that contained a 7TM domain (Figure 5A).
Next, we used BLASTP to determine the degree of homology
to human GPCRs, which would reflect the conservation of
function. Genes that had BLASTP scores of e , 0.05 on the
NCBI server were classified in Signaling: heteromeric G pro-
tein: receptor. Those with e scores.0.05were classified as TM
protein: 7TM, with class designated by WormBase in Cat3.
Thus, genes classified within Neuronal function or Signaling

Figure 4 WormCat analysis of tissue-specific gene
sets reveals the importance of the intestine in stress-
responsive categories. (A) Diagram showing larval
tissues isolated in tiling array data used in figures
B–D from Spencer et al. (2011) (B) WormCat Cate-
gory 1 enrichment for larval tissue-specific selective
enriched gene sets shows differentiation of Body
wall muscle (BWM), Intestine (Int), Hypodermis
(Hyp), Excretory cells (Exe), and Neurons (Neuro).
(C–D) Category 2 and 3 breakdown of Stress Re-
sponse (C) and Metabolism (D). (E) Schematic show-
ing adult tissues isolated for RNA-seq used in figures
F–I from Kaletsky et al. (2018) (F) Category 1 analysis
of enriched genes shows the differentiation of mus-
cle and neuronal functions. (G–H) Category 2 and
3 breakdown of Extracellular Material gene enrich-
ment, including a Venn diagram showing relation-
ships between collagen genes in intestine and
hypodermis (G), and Metabolism (H). Bubble heat
plot key is the same as Figure 1D. 1CC, 1-Carbon
Cycle; EC Material, Extracellular Material; GST,
Glutathione-S-transferase; Maj Sperm Protein, Ma-
jor Sperm Protein; Neur Function, Neuronal Function;
Prot General, Proteolysis General; Short Chain
Dehyd, Short Chain Dehydrogenase; TM Transport,
Transmembrane Transport
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have a strong likelihood of GPCR function, whereas those
in TM protein: 7TM have not been sufficiently defined.
Signaling: G protein categories are enriched in neuronal
genes sets from both Kaletsky et al. (2018) and Spencer
et al. (2011) (Figure 5, B and C, Table S9, and Table S10),
and 7TMproteins show enrichment in the larval pan-neuronal,
glr-1-expressing neurons, and motor neurons (Figure 5C,
Table S9, and Table S10). Thus, our annotation strategy al-
lows separation of GPCRs with a high likelihood of neuronal
function, yet still permits enrichment of the larger class of
7TM proteins in neuronal tissues.

In order to directly compareWormCat andGOon the larval
neuronal data sets, we examined category enrichment of
Spencer et al. (2011) pan-neuronal and motor neuron genes
in GO by GOrilla (Eden et al. 2009), using REVIGO (Supek
et al. 2011) for visualization (Figure S6, Figure S8, and Table
S9). The most enriched category in the pan-neuronal or mo-
tor neuron datasets was G protein-coupled receptor signal-
ing (GO:0007186). Next, we used WormCat to determine
howwe had annotated genes within GO:0007186, and found
that this GO category included genes we had classified in
Signaling: Heteromeric G protein (G-alpha subunits and recep-
tors), Neuronal Function: Synaptic function (neuropeptides
and neurotransmitter receptors), and TM protein: 7TM recep-
tor (Figure 5C and Table S9).While inclusion of the G protein
signaling apparatus and neuropeptide ligands is appropriate
for the broad category of G protein signaling, the GO cate-
gories do not differentiate between GPCRs with a high likeli-
hood of function from the poorly classified 7TM proteins. In
addition, many of the nlp genes listed in GO:0007186 are
functionally uncharacterized, and, thus, it is not clear if they
are bona fide GPCR ligands or could interact with other re-
ceptors outside of GPCR signaling (Li and Kim 2008). There-
fore, WormCat improves on GO analysis for these datasets by
providing more nuanced information on the function of these
genes in GPCR pathways.

Neuronal genes from adult (Kaletsky et al. 2018) and lar-
val (Spencer et al. 2011) gene sets also showed strong en-
richment in Cat2 and Cat3 classifications within Neuronal
function, such as Synaptic function, neuropeptide, and
neurotransmitter (nt) receptor (Figure 5, D and E, Table S9,
and Table S10). Cilia gene enrichment was also apparent in
the pan-neuronal and dopaminergic larval gene sets (Figure
5D and Table S9). Neurons are the only ciliated cells in C.
elegans, and cilia occur on multiple neuronal subtypes (Inglis
et al. 2007). However, all dopaminergic neurons are ciliated
(Inglis et al. 2007), and, are, therefore, more likely to show
enrichment. Taken together, our WormCat analysis of these
large tissue-specific gene sets provides a detailed view of
gene classes specific to muscle, hypodermis, intestine, and
neurons in larvae and adults. We have identified differential
enrichment in lipid metabolism genes, and collagens from
intestine and hypodermis defined a classification system for
GPCRs and 7TMs, and identified Cilia as a major enriched
category in dopaminergic neurons. Much of this information
goes beyond what GO analysis reveals, and provides

predictions that can be useful to design future studies. Iden-
tification of these types of nuanced tissue-specific patterns is
an important step to understanding how specific cell types
function.

Drug interactions limiting lifespan induce changes in
sterol metabolism

C. elegans is particularly suited to studies determining gene
expression changes in response to a panel of treatments in a
whole animal, and to correlate these changes to physiological
function. For example, Admasu et al. (2018) generated a
complex gene expression dataset by performing parallel
RNA-seq on animals treated with five lifespan-increasing
drugs that affect distinct pathways (Allantoin, Rapamycin,
Metformin, Psora-5, and Rifampicin). They used five pairwise
combinations and three triple-drug combinations to deter-
mine if any combination lead to further lifespan extension,
and to identify gene expression profiles associated with in-
creased longevity (Admasu et al. 2018). They found that one
triple-drug combination (Rifa/Psora/Allan) activated lipo-
genic metabolism through the transcription factor SBP-1/
SREBP-1, and determined that the drug-induced longevity
was dependent on SBP-1 function (Admasu et al. 2018).
The authors also made the striking observation that a distinct
triple-drug combination (Rifa/Rapa/Psora) reduced lifespan,
even though each single drug or drug pairs increased longev-
ity (Admasu et al. 2018). To determine if any gene expression
categories might explain this effect, we used WormCat to
analyze category enrichment for the up and downregulated
genes for each single drug, pairwise, or triple-drug combina-
tion (Figure 6A, Figure S9, Figure S10, Table S11, and Table
S12). Similar to the author’s KEGG analysis (Admasu et al.
2018), we observed Metabolism: lipid enrichment in long-
lived Rifa/Rapa/Psora-treated animals (Figure 6A and Table
S11); however, we also noted that Metabolism: lipid was
enriched in all three combinations with WormCat. Next, we
examined the up and downregulated genes to determine if
any categories correlated with the failure to survive in the
Rifa/Rapa/Psora treated animals. We did not find category
signatures in the downregulated genes that appeared to cor-
relate with the decrease in longevity (Figure S10 and Table
S12). However, upregulated genes from the short-lived Rifa/
Rapa/Psora treated animals were enriched in another spe-
cific class of lipid metabolic genes: sterol metabolism (Figure
6A and Figure S9). Closer examination of the single and
pairwise combinations showed that the enrichment of sterol
metabolic genes only appeared in the triple combination with
poor survival (Figure 6B). C. elegans does not use cholesterol
as a membrane component (Ashrafi 2007). Thus, this cate-
gory does not include cholesterol synthesis genes, but does
include genes involved in modification of sterols, for exam-
ple, in steroid hormone production (Watts and Ristow 2017).
Examination of individual genes (Table S11, Tab 18 Sterol
Genes) showed that 5 of the 19 had lifespan phenotypes,
and 4 had lethality related phenotypes in WormBase, consis-
tent with their effects on survival in Admasu et al. (2018).
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Furthermore, Murphy et al. (2003) showed that 3 of the
19 sterol genes are upregulated in another long-lived model,
daf-2(mu150), and two of these, stdh-1 and stdh-3 are
required for lifespan extension in daf-2(mu150) animals
(Murphy et al. 2003). Thus, the category enrichments cap-
tured by WormCat for this drug study have identified sterol
metabolism genes as potential players in the paradoxical life-
span shortening effects of the Rifa/Rapa/Psora combination.

In order to compare gene set enrichment of the triple-drug
combinations from WormCat with GO, we analyzed upregu-
lated genes from the Rifa/Psora/Allan-, Rifa/Rapa/Allan-,
and Rifa/Rapa/Psora-treated animals in GOrilla (Eden
et al. 2009), and visualized the data with REVIGO (Supek
et al. 2011) (Figure S11 and Table S11). WormCat and
GO showed multiple similarities. For example, WormCat
and GO identified extracellular matrix-linked categories in
all three triple combinations (WormCat: EC MATERIAL;
GOrilla: GO:0030198: extracellular matrix organization)
(Figure S9 and Table S11). However, WormCat identi-
fied Metabolism: lipid in all three combinations, whereas
GO analysis by GOrilla only identified categories linked to
lipid metabolism (GO:0006629: lipid metabolic process

(q= 5.633 10203), GO:0044255 cellular lipid metabolic pro-
cess (q = 1.49 3 10202) and GO:0006631 fatty acid meta-
bolic process (q = 2.16 3 10202) in the Rifa/Rapa/Psora
dataset (Table S11). WormCat also showed a much higher
enrichment score for Metabolism: lipid, P = 2.00 3 10214)
(Table S11). Thus, as in the sams-1 microarray data discussed
previously, WormCat provides an improved tool for deter-
mining the enrichment of metabolic genes.

WormCat also foundanenrichment of transcription factors
in eachof the triple combinations,with specific enrichments in
nuclear hormone receptors and homeodomain genes in the
Rifa/Psora/Allan-upregulated set (Figure S9) Enrichments of
nuclear hormone receptors in C. elegans is potentially of in-
terest as they may regulate multiple metabolic regulatory
networks (Arda et al. 2010). However, GOrilla only identified
categories linked to transcription factors (GO:0006355: reg-
ulation of transcription, DNA-templated, GO:0051252: reg-
ulation of RNA metabolic process, GO:2001141: regulation
of RNA biosynthetic process, GO:1903506 regulation of
nucleic acid-templated transcription, and GO:0019219 regu-
lation of nucleobase-containing compound metabolic pro-
cess) in the Rifa/Psora/Allan dataset. No individual class of

Figure 5 Detailed analysis of neuronal tissue-
specific gene sets reveals specific enrichment for cilia
gene expression on dopaminergic neurons. (A) Flow
chart showing the process for annotating seven
transmembrane (7TM) proteins. e value is the sta-
tistical score provided by the NCBI BLAST server.
Asterisk on Signaling notes that only predicted
GPCRs within this category were submitted to the
NCBI conserved domain server. (B–E) Breakdown of
Neuronal Function to Category 2 and 3 from larval
data in Kaletsky et al. (2018) (B and D) or adult data
in Spencer et al. (2011) (C and E). 7TM receptor,
Seven Transmembrane Receptor; BWM, Body Wall
Muscle; dmsr, DroMyoSuppressin Receptor Related;
Dopa, Dopaminergic Neurons; Exe, Excretory Cells;
GABA, Gamma-Aminobutyric Acid-Specific Neu-
rons; glr-1, Glutamate Receptor-Specific Neurons;
Hetero G protein, Heterotrimeric G Protein; Hyp,
Hypodermis; IFT, Intraflagellar Transport; Int, In-
testine; mks module, Meckel-Gruber syndrome
Module; Motor, Motor Neurons; nt Receptor, Neu-
rotransmitter Receptor; Neuro, Neurons; Pan-N,
Pan-Neuronal
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transcription factors showed enrichment in any of the triple
combinations by GO (Table S11); thus, WormCat offers a
clear advantage over GO by providing increased coverage
across diverse categories of gene function.

Identification of gene set enrichments in RNAi
screening data

In order to use WormCat to analyze genome-scale RNAi
screening data, we mapped WormCat annotations to the list
of genes in the Ahringer library (Kamath et al. 2003) (Table
S13). To test this approach, we used data from the Roth
laboratory, who screened the Ahringer library for changes
in glycogen storage in C. elegans and identified .600 genes,
scored as glycogen high, glycogen low, and abnormal locali-
zation (LaMacchia et al. 2015) (Figure 7A and Table S14).
The authors functionally classified all hits from the screen
with an inhouse annotation list, graphed the percentage
within each group, and noted high percentages of genes with
roles in metabolism (electron transport chain), signaling,
protein synthesis or stability, and trafficking (LaMacchia
et al. 2015); however, they were unable to assign statistical
significance to any of the groups. WormCat identified similar
groups as the LaMacchia et al. (2015) functional classifica-
tion for the “glycogen low” candidates. For example, we iden-
tifiedMetabolism: mitochondria, complex I, III, IV, and V and
found statistical enrichment in these categories (Figure 7B
and Table S14). However, signaling had no enrichment (Ta-
ble S14). Thus, WormCat can identify statistically relevant
pathways in genome-scale RNAi screen data.

To provide a direct comparison betweenWormCat and GO
with this dataset, we determined the GO term associatedwith
the “glycogen low” data by GOrilla (Eden et al. 2009), and
visualized the data with REVIGO (Supek et al. 2011) (Figure
S12 and Table S14). A total of 185 separate GO terms were
identified in this data set compared to the 4 Cat1 level terms
identified by WormCat (Metabolism, Lysosome, Proteolysis
Proteasome, and Trafficking) (Figure 7B and Table S14).
WormCat also finds a limited number of Cat2 groupings
within these sets, including Metabolism: mitochondria,
Lysosome: vacuolar ATPase, Proteolysis Proteasome:19S, 20S,
and Trafficking: ER/Golgi) (Figure 7B and Table S14). This
large difference in the number of significantly enriched cate-
gories stems from the multiple, overlapping categories pre-
sent in the GO analysis. For example, the mitochondrial gene
cyc-1 (cytochrome c oxidase) is represented in 87 of the GO
terms, whereas the annotation in WormCat isMETABOLISM:
mitochondria (Table S14, tab 8).

Similarly, the vacuolar ATPase vha-6 appears in 39 of GO
terms returned, the proteasomal component pbs-7 is present
in 23, and the ER/Golgi COP I component Y71F9AL.17 is in
21 (see Table S14, tabs 9–11). This GO term redundancy
provides the user with a complex, hard to interpret, list. In
addition, GO terms that are repeated fewer times (such as
those containing the trafficking gene Y71F9AL.17) become
marginalized in a complex list. Thus, with this dataset,
WormCat provides easily distinguished categories with clear
links to biological or molecular functions. The GO terms show
the same genes repeated in a large fraction of the categories
and obscure categories with less gene redundancy.

Discussion

WormCat provides new insights into comparative
RNA-seq data

Current technology allows for the routineuse of genome-scale
experiments for the generation of gene expression data. The
goal of these experiments is often to identify classes of genes
that add insight to biological functions, as well as to highlight
selected genes for individual analysis. GO analysis, while
widely used, is difficult to apply to datasets with multiple
combinations of treatments or genetic perturbations. Further,
for C. elegans, current GO analysis is often inaccurate, and
misses useful physiological and molecular information. Here,
we have shown that WormCat can annotate gene categories,
provide enrichment statistics, and display user-friendly
graphics for gene sets identified from C. elegans gene expres-
sion studies. Furthermore, our visualization strategy allows
comparison across multiple datasets, facilitating the identifi-
cation of categories with shared biological functions.

Our initial, script-based, smaller-scale version ofWormCat
highlighted changes in metabolic gene expression in C. ele-
gans with changes in levels of the methyl donor SAM or
methyltransferases modifying H3K4me3 (Ding et al. 2018).
In this study, we have expanded the annotation list,

Figure 6 WormCat analysis of RNA-seq data from C. elegans treated
with combinations of lifespan-lengthening drugs reveals the emergence
of sterol metabolism in drug combinations, limiting survival. (A) Compar-
ison of Metabolism: lipid: sterol enrichment in single, double, and triple-
drug combinations shows sterol emergence in the Rifa/Rapa/Psora gene
set (Admasu et al. 2018). (B) Diagram showing a summary of data from
lifespan changes after triple-drug treatment from Admasu et al. (2018).
Pink box denotes drug combination that causes premature death. Bubble
heat plot key is the same as Figure 1D. Allan, Allantoin; Psora, Psora-4;
Rapa, Rapamycin; Rifa, Rifampicin
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developed a web-based server, and added a new graphical
output. We used WormCat to successfully analyze data
from metabolic, tissue-specific, and drug-induced expression
changes. This analysis provides not only validation and use-
case examples, but also additional insights into the known
gene expression patterns. For example, our examination of
germline gene expression datasets from the Kimble and Kim
laboratories (Reinke et al. 2000; Ortiz et al. 2014) identified a
large class of microtubule kinases (TTK) as enriched in sper-
matogenic gene sets, and as a coenriched gene set withMSPs.
One TTK, spe-6, has been previously identified in a screen for
mutants with defects in sperm development (Varkey et al.
1993). Our results suggest that many genes in this family
could have important functions in spermatogenesis, and that
the appearance of MSPs and TTKs in a dataset could also
serve as a marker for maleness. Finally, we used WormCat
to analyze a dataset consisting of RNA-seq from C. elegans
treated with multiple lifespan-changing drugs, alone or in
combination, plus one mutation animal strain that extends
lifespan (Admasu et al. 2018). The classification and graph-
ical output allowed us to identify the upregulation of sterol
metabolism genes in a triple-drug combination that was not
present in the single or double drug treatments. Thus,
WormCat identified a gene set that may be important for
the effects of the lifespan-altering drugs in this assay.

Strengths and weaknesses of WormCat

We developed WormCat to overcome some of the limitations
of GO analysis when analyzing C. elegans gene expression
data, and to utilize specific phenotype data available in
WormBase. In addition, we specifically engineered WormCat
to classify data for the identification of coexpressed or cofunc-
tioning gene sets. Finally, we developed two graphical out-
puts: a scaled heat map/bubble plot and a sunburst plot. The
modular nature of the bubble plot allows multiple datasets to
be grouped and compared, while the sunburst plot gives a
concise view of single datasets, as may be obtained with
screening data. Our validation with random gene testing
and analysis of C. elegans gene expression data from meta-
bolic, tissue-specific, and drug-treated animals shows that
WormCat is a robust tool that provides biologically relevant
gene enrichment information. There are three main areas
that WormCat provides an advantage over using GO that
are apparent in our case studies. First, as discussed above,
we found that, in some of our test cases, WormCat identified
broader sets of genes within categories or categories that
were not identified by GO. Second, the WormCat output is
much easier to interpret; the bubble charts provide intuitive
visualization, and the tables provide clear access to the en-
richment statistics and annotation of the input genes. Third,
the availability of the annotations for each input gene enables
comparisons between genes in categories. For example, we
found thatwhile Extracellular material: collagenwas enriched
in both intestine and hypoderm in the Kaletsky et al. (2018)
data set, the genes were nonoverlapping, suggesting tissue-
specific expression of collagen genes. This comparison would
be difficult to make with GO, as many common GO servers do
not supply the genes with each category in an easily accessi-
ble manner. Directly comparing the genes within WormCat
and GO categories from our previously published dataset of
gene expression after sams-1 knockdown, we found that
WormCat identified a broader set of lipid metabolic genes
than GO analysis from GOrilla, and that the genes identified
only by GO analysis might be better classified in different
categories to reflect their biological functions. Thus, WormCat
provides an alternative to GO with advantages in output that
improve data interpretation and access to gene annotations
that allow deeper comparisons among categories. In some
cases, WormCat also identifies categories that are not found
by GO.

However, there are several limitations to WormCat. First,
while multiple researchers with varied expertise curated our
annotation list, some genes may be misannotated, or some
Cat2orCat3groupsmayfit better inotherCat1 classifications.
We will update the WormCat annotation list at periodic
intervals while providing access to the previous annotation
lists. Second, each C. elegans gene received a single, nested,
annotation, rather than a group of annotations as in GO. We
chose to prioritize the visualization of enriched gene sets in
this instance, using a single annotation per gene to permit
graphing in scaled heat maps. Access to the program and

Figure 7 WormCat analysis of a genome-scale RNAi screen quantitates
categories of candidate genes. (A) Schematic of the RNAi screen from
LaMacchia et al. (2015) identifying candidate genes that altered glycogen
staining. (B) Sunburst diagram from low glycogen candidates showing
significantly enriched categories.
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annotation lists for the local application also allows users to
customize the annotation lists according to their preferences.

Annotation lists of genome-scale data are likely to contain
errors. We have defined several sources of error, and have
taken corrective steps. In some cases, a gene may be simply
misannotated. For example, a component of theGeneral tran-
scription machinery was placed in Signaling by the annotator.
In others, the classification system may be incorrect. An ex-
ample of this would be classifying enzymes that modify small
molecules as protein modification. To estimate the misclassi-
fication error rate, we generated a list of 3000 random
WormBase IDs. We mapped each ID to our annotation list and
rechecked the annotations. We found 29/2294 genes
(1.3%) whose annotations were incorrect by our criteria
(13 of these were Unknown genes that could be classified
in other categories). This suggests �300 genes in the entire
dataset may bemisannotated by our criteria, many represent-
ing Unknown genes that could acquire classification. We will
periodically update the WormCat annotation lists to accom-
modate new gene information and correct errors.

It is important to note that some gene classifications de-
pend on criteria that are open to interpretation. For example,
transcription factors regulating genes within a pathway are
grouped within a linked category to allow identification of
cofunctioning genes. For instance, efl-1, a master regulator of
cell cycle genes, is annotated as Cell cycle: transcriptional
regulator, instead of with the more broadly acting trans-
regulatory factors in Transcription factor: E2F. To allow for dif-
ferent interpretations of the annotation strategy, we have set
up a GitHub site (https://github.com/dphiggs01/wormcat),
where the annotation list and scripts for executing WormCat
can be downloaded and customized by the user to accommo-
date differences in annotation preference.

The value of gene set enrichment is also highly dependent
on the criteria used to specify the regulated genes. In the
present study, we used the same criteria as the respective
authors, except that we separated up and downregulated
genes where necessary. For example, in the Kaletsky et al.
(2018) tissue-specific data, the authors provided data for
all genes expressed in each tissue, enriched genes (expressed
at FDR .0.05, and log2 fold change .2 relative to other
tissues), or unique genes (log2 RPKM .5) significantly dif-
ferentially expressed in comparison to the expression of each
of the three other tissues (FDR .0.05, log2 fold change .2
for each comparison) (Kaletsky et al. 2018). We found the
best resolution of WormCat categories between the tissues
occurred with the enriched datasets, rather than with all
genes or unique gene sets. This suggests that gene lists with
all expressed genes may require more stringent statistical
cutoffs, but also that WormCat may not be as suited to highly
filtered data.

Application to other organisms

By developing WormCat specifically for analyzing C. ele-
gans gene sets, we were able to take advantage of available
data on WormBase, but this limited the applicability of our

annotation list with other organisms. Although researchers
in mammalian fields can access pathway analysis pipelines
such as Ingenuity Pathway Analysis (Qiagen; Krämer et al.
2014) that identify functionally linked genes, these programs
do not necessarily provide a simple graphical output for com-
parative analysis. WormCat analysis generating the scaled
heat/bubble charts can be adapted for use with other organ-
isms by running the program locally with altered annotation
lists. Replacing gene IDs and the Cat1, Cat2, and Cat3 values
with any annotation allows customization of the pipeline to
any other organism. Thus, the modular nature of WormCat
allows adaptation to multiple annotation strategies within C.
elegans or to other organisms, allowing a streamlined visuali-
zation for examining genome-scale expression or screen data.
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