Cholesterol-Independent SREBP-1 Maturation Is Linked to ARF1 Inactivation

Graphical Abstract

Highlights

- A C. elegans screen finds lpin-1 and arf-1.2 as necessary for low-PC SBP-1 activation
- Depletion of mammalian LPIN1 and ARF1 activates SREBP-1 and rescues low-PC effects
- Levels of active ARF fall when PC synthesis is blocked or LPIN1 is depleted
- Blocking PC synthesis or LPIN1 siRNA decreases GBF1 association with microsomes

Authors
Lorissa J. Smulan, Wei Ding, Elizaveta Freinkman, Sharvari Gujja, Yvonne J.K. Edwards, Amy K. Walker

In Brief
SREBP transcription factors may be proteolytically activated in response to low cholesterol or by low phosphatidylcholine (PC) by distinct mechanisms. Smulan et al. find that SREBP-1 processing in low PC is linked to changes in phosphatidic acid, diacylglycerol, or PC in microsomal membranes leading to decreases in active GTP-bound ARF1.
Cholesterol-Independent SREBP-1 Maturation Is Linked to ARF1 Inactivation

Lorissa J. Smulan, Wei Ding, Elizaveta Freinkman, Sharvari Gujja, Yvonne J.K. Edwards, and Amy K. Walker

INTRODUCTION

Metabolic gene regulation is often connected to products or substrates in the pathway. In some cases, such as low-cholesterol stimulated maturation of SREBP (sterol regulatory element binding protein) transcription factors, mechanisms have been described in detail. SREBPs reside in the endoplasmic reticulum (ER) as membrane intrinsic, inactive precursors (Osborne and Espenshade, 2009). Drops in intra-membrane cholesterol promote transport of SREBP to the Golgi (Goldstein et al., 2006) where proteases release the transcriptionally active portion (Brown and Goldstein, 1997). SREBPs regulate genes required for fatty acid, TAG (triglyceride), PC (phosphatidylcholine), and cholesterol synthesis (Horton et al., 2002); therefore, it is not surprising that control of SREBP activity is complex and responds to a variety of metabolic signals. SREBP-2 is tightly linked to cholesterol synthesis, whereas the SREBP-1a/c isoforms have broader roles (Horton, 2002). Using C. elegans and mammalian models, we previously found that low levels of SAM acted through PC to induce cholesterol-independent SREBP-1 processing (Walker et al., 2011). Instead of depending on COP II to transport to the ER, low PC was associated with dissolution of Golgi markers, suggesting SREBP-activating proteases may cleave ER bound SREBP-1, as in Brefeldin-A mediated activation (DeBose-Boyd et al., 1999). However, regulatory factors linking PC to these processes were unclear.

RESULTS

Targeted RNAi Screen to Reveal Low-PC Modulators of SREBP-1

To identify additional factors in this pathway, we performed a C. elegans RNAi screen using the SBP-1/SREBP-1 responsive reporter. Our genetic approach identified the Ahringer library (Table S1). We screened for candidates satisfying two criteria: first, necessary for SBP-1/SREBP-1 activation of SBP-1/SREBP-1. Mechanistically linking the major hits of our screen, we find that limiting PC synthesis or LPIN1 knockdown in mammalian cells reduces the levels of active GTP-bound ARF1. Thus, changes in distinct lipid ratios may converge on ARF1 to increase SBP-1/SREBP-1 activity.

SUMMARY

Lipogenesis requires coordinated expression of genes for fatty acid, phospholipid, and triglyceride synthesis. Transcription factors, such as SREBP-1 (Sterol regulatory element binding protein), may be activated in response to feedback mechanisms linking gene activation to levels of metabolites in the pathways. SREBPs can be regulated in response to membrane cholesterol and we also found that low levels of phosphatidylcholine (a methylated phospholipid) led to SBP-1/SREBP-1 maturation in C. elegans or mammalian models. To identify additional regulatory components, we performed a targeted RNAi screen in C. elegans, finding that both lpin-1/Lipin 1 (which converts phosphatidic acid to diacylglycerol) and arf-1.2/ARF1 (a GTPase regulating Golgi function) were important for low-PC activation of SBP-1/SREBP-1. Mechanistically linking the major hits of our screen, we find that limiting PC synthesis or LPIN1 knockdown in mammalian cells reduces the levels of active GTP-bound ARF1. Thus, changes in distinct lipid ratios may converge on ARF1 to increase SBP-1/SREBP-1 activity.
Figure 1. Targeted RNAi Screen to Identify Modulators of SBP-1/SREBP-1 Activation in Low PC Conditions in *C. elegans*

(A) Schematic representation of low-phosphatidylcholine (PC)-based SBP-1/SREBP-1 activation in *C. elegans*.

(B) Schematic representation of RNAi screen designed to distinguish factors necessary and sufficient for low-PC based SBP-1 activation (classes 2 and 3) from those generally important for SBP-1/SREBP-1 activity (classes 1 and 3).

(C) Heatmap showing genes which downregulate *fat-7* expression in both *pfat-7::GFP* and *sams-1(lof);pfat-7::GFP* animals.

(D) Heatmap showing genes increasing *fat-7* expression in *pfat-7::GFP* animals, while reducing GFP expression in *sams-1(lof);pfat-7::GFP* animals.

(E) Color bar representing averaged GFP scores represented by yellow (high) and by blue (low).

(F and G) Epifluorescence imaging showing RNAi of class 2/3 candidates in *pfat-7::GFP* (F) or *sams-1(lof);pfat-7::GFP* (G) in young adult *C. elegans*. Scale bar, 75 μm. See also Table S1 and Figure S1.
there were no genes that increased pfat-7::GFP in sams-1(lof) animals (class 4). Class 1 and class 3 genes are predicted to be generally important for SBP-1 function and indeed include many regulators of classical SREBP-1 processing such as scp-1 (SCAP, SREBP cleavage-activating protein) and the COP II components such as sec-23, sec-24.1, and sar-1 (Figure 1C, red lettering). As in our previous data, PC synthesis genes (pcyt-1 and cep-1) (Figure 1D, red labeling) fell into class 2 (Walker et al., 2011). Genes necessary for low-PC processing and sufficient to activate SBP-1 in normal PC (Figure 1D, red lettering) were predicted to lie in the intersection of candidate classes 2 and 3. The GTPase arf-1.2 was present in this category, as well a phospholipase C ortholog. However, the PA phosphatase lpin-1 (Reue, 2007) showed the most striking increase in pfat-7::GFP combined with decrease in sams-1(lof);pfat-7::GFP (Figures 1D–1G; Table S1).

Next, we used qRT-PCR to determine expression of gfp, endogenous fat-7 and fat-5 (another SBP-1 responsive gene) in the reporter strain and also analyzed fat-7 and fat-5 expression in wild-type animals. First, we confirmed that five of the top ten class 1 genes were necessary for pfat-7::GFP mRNA expression (see Table S1; see columns K–M for validation). For class 2 genes, we found that only lpin-1, arf-1.2, and plc-1 RNAi increased gfp, endogenous fat-7 and fat-5 mRNA levels (Figures S1B and S1D). lpin-1, arf-1.2, and plc-1 RNAi also decreased gfp levels in the low-PC sams-1(lof);pfat-7::GFP (Figures S1C and S1E). Finally, while lpin-1 and arf-1.2 RNAi increased endogenous fat-7 and fat-5 in wild-type worms, plc-1 effects occurred only in the transgenic strain (Figure S1D). We also noted that sams-1(lof) animals with reduced lpin-1 showed additional phenotypes, including slowed development and synthetic lethality (Figure S1G).

The importance of lpin-1 for low-PC activation pfat-7::GFP prompted us to examine pathways producing the LPIN-1 substrate, PA. C. elegans contains multiple paralogs of PA synthesis genes (Figure S1A); three GPATs, acl-4, -5 and -6 and two AGPATs, acl-11 and acl-13 (Onba et al., 2013). Our screen data showed that one GPAT (acl-4) and one AGPAT (acl-11) were required for pfat-7::GFP expression in wild-type, but not in sams-1(lof) animals (Figure 1C). In validation assays, we found GFP was lower after acl-4 or acl-11 RNAi (Figure S2A), as were gfp and endogenous fat-7 mRNA levels (Figure S2B). pfat-7::gfp or endogenous fat-7 gene expression was not altered by acl-4 and acl-11 RNAi in low-PC (sams-1(lof); pfat-7::GFP) conditions (Figures S2C and S2D).

sams-1 or lpin-1 RNAi Reduce DAG and Change PA/PC Ratios in C. elegans Microsomal Membranes

Loss of sams-1 decreases PC and increases TAG (Ding et al., 2015; Walker et al., 2011); however, lpin-1 knockdown is predicted to affect PA and DAG (Figure S1A). To generate lipid profiles in membranes linked to SBP-1/SREBP-1 processing, we profiled microsomal lipids from sams-1 or lpin-1 RNAi animals. We validated fractionations by immunoblotting with C. elegans ER or Golgi specific antibodies (Figure S3A). LC/MS analysis identified over 1,600 lipid species in over 20 classes (Table S2). Principal component analysis shows that control, sams-1, and lpin-1 RNAi samples are distinct and that biological replicates are similar (Figure S3B). We analyzed the data in two ways: first, values for lipid species were totaled for each class and second, the distribution of species within each class was determined. In sams-1(RNAi) microsomal fractions, we found that TAGs as a class were increased and PCs as a class were decreased (Figures S2C and S2D; see Table S2 for statistics), as in our previous studies analyzing whole-worm extracts by GC/MS (Ding et al., 2015; Walker et al., 2011). Many other lipid species also changed (Figure S3E; Table S2), perhaps in response to synthetic links between PC and other lipids. We were surprised to see that DAG as a class was similar to wild-type; however, many individual species shifted significantly lower and the distribution of species within the class differed significantly after sams-1(RNAi) (Figure S3F; Table S2). This is in contrast to models for PC metabolism that predict increased DAG when PC synthesis is blocked (Sarri et al., 2011) and may reflect the specific nature of our assay.

lpin-1 and arf-1.2 Are Important for low-PC Effects on SBP-1

Increased fat-7 expression after lpin-1 RNAi suggests SBP-1 may be more active. To determine whether maturation was stimulated, we examined subcellular localization of intestinal GFP::SBP-1 (Walker et al., 2010). Similar to sams-1 RNAi, knockdown of either lpin-1 or arf-1.2 resulted in increased nuclear levels of GFP::SBP-1 (Figure 2A), along with increases in fat-7 and fat-5 (Figure 2B). Interestingly, we noted that lpin-1 expression was slightly increased after sams-1 RNAi (Figure 2B; see also Ding et al., 2015). Finally, depletion of PA synthesis enzymes acl-4 and acl-11 had opposite effects, decreasing nuclear SBP-1 (Figures S2E–S2G).

Next, we performed Sudan Black staining to gauge size and distribution of lipid droplets and measured TAG for total levels. To avoid confounding results from the developmental delay of sams-1(lof); lpin-1(RNAi) animals (Figure S1G), PC production was rescued with choline until the L3 stage (Ding et al., 2015); growth without choline after L3 was sufficient to increase SBP-1-dependent gene expression (Figure S1H). lpin-1 RNAi animals appeared clear with slightly reduced Sudan Black staining (Figures 2C and 2D), consistent with reports of decreased Nile Red (Golden et al., 2009; Zhang et al., 2013); however, TAG stores were not reduced in colorometric assays (Figure 2E) or microsomal extracts (Table S2, see tab:TG.class). This suggests other mechanisms may compensate for LPIN-1 function in TAG synthesis. Importantly, large lipid droplets in sams-1(lof) animals decreased upon lpin-1 RNAI and TAG returned close to wild-type levels (Figures 2C–2E). Thus, interference with both sams-1 and lpin-1 rescues effects of low-PC on stored lipids.
Figure 2. In *C. elegans*, *lpin-1* and *arf-1.2* RNAi Increase Nuclear Localization of SBP-1::GFP and Are Important for Lipid Accumulation in *sams-1(lof)* Animals

(A) Confocal projection showing nuclear accumulation of intestinal GFP::SBP-1 after *sams-1*, *lpin-1*, or *arf-1.2* RNAi. Scale bar, 10 μm.

(B) qRT-PCR showing upregulation of *fat-5* and *fat-7*.

(C–E) Lipid accumulation when *sams-1* and *lpin-1* were co-depleted assessed by Sudan Black staining (C) with quantitation of percent of animals stained (D) or TAG level (E). Scale bar for Sudan Black, 25 μm.

(F–H) For *sams-1* and *arf-1.2* co-depletion, Sudan Black staining and quantitation are in (F) and (G), and TAG measurements are in (H). Number of animals is shown in parentheses.

Error bars show SD. Results from Student’s t test shown by *p < 0.05, **p < 0.01, ***p < 0.005. See also Table S2 and Figure S2.
arf-1.2 knockdown also increased fat-7 expression and nuclear localization of GFP::SBP-1 (Figures 2A and 2B). Therefore, we assessed Sudan Black staining and TAG levels. arf-1.2 RNAi worms had an increase in lipid droplets (Figures 2F and 2G); however, TAG levels were only slightly higher than wild-type (Figure 2H), suggesting effects on droplets size and not total lipid levels. This is consistent with reports of ARF function in lipid droplet formation (Witting et al., 2014). In contrast, arf-1.2 RNAi reduced lipid droplet appearance, number, and overall TAG levels in sams-1(lof) animals. Taken together, our C. elegans studies show that reducing function of LPIN-1, an enzyme converting PA to DAG, limits low-PC activation of SBP-1/SREBP.

Thus, enzymes that produce or utilize PA may be a key to this mechanism.

LPIN1 Knockdown Is Sufficient to Activate Mammalian SREBP-1 and Necessary for Low-PC Effect

In mammals, interference with PC synthesis results in hepatosteatosis (Vance, 2014), as SREBP-1-dependent lipogenesis programs are stimulated (Walker et al., 2011). To determine whether Lipin 1 was required for activation of mammalian SREBP-1 in this context, we depleted LPIN1 with small interfering RNA (siRNA). Like knockdown of PCTY1a/CCTa, the rate limiting enzyme in mammalian PC production, LPIN1 depletion increased levels of mature, nuclear SREBP-1 (Figures 3A–3C). LPIN1 knockdown also increased nuclear localization and proteolytic maturation of a N-terminal HA tagged SREBP-1 (Figure 3D; Figures S4A and S4B). siRNA-mediated depletion was confirmed by qRT-PCR and immunoblots from Dignam extracts of HepG2 cells (Figures S4C and S4D).

To determine whether LPIN1 function was important for low-PC effects on SREBP-1, we used siRNA to deplete both PCTY1a and LPIN1 in HA-SREBP-1 lines. For combined siRNA, we kept RNA amounts constant with scrambled control and achieved efficient knockdown for both LPIN1 and PCTY1a (Figure S4C). We found that nuclear HA-SREBP-1 localization was lost in PCTY1a/LPIN1 double knockdowns (Figures 3D and 3F), suggesting that, as in C. elegans, LPIN1 knockdown abrogates the low-PC effect on SREBP-1. Similar effects were seen with endogenous SREBP-1 (Figures S4E and S4F).

Lipin 1 converts PA to DAG, thus lower activity predicts increases in PA (Takeuchi and Reue, 2009). To determine whether exogenous PA could recapitulate LPIN1 effects, we treated HA-SREBP-1 cells with PA and found that indeed, SREBP-1 nuclear accumulation increased (Figures 3E and 3G). Further paralleling LPIN1 knockdown, PA decreased nuclear SREBP-1 in PCTY1a siRNA cells (Figures 3E and 3G). Although effects of exogenous PA on cultured cells may be complex and have species dependent effects, changes in SREBP-1 maturation are consistent with effects of LPIN1 knockdown. We also investigated low-PC induced lipid droplet formation and found that, as in C. elegans, co-depletion of PCTY1a with LPIN1 restored lipid droplets to wild-type levels (Figures S4G–S4I). Taken together, our results suggest that inhibiting LPIN1 expression or adding its exogenous substrate can reverse the effects of PCTY1a knockdown on SREBP-1.

Lipin 1 has been shown to inhibit SREBP-1 activity when mTORC1-dependent (mechanistic Target of Rapamycin Complex) phosphorylation decreases and it localizes to the nucleus, sequestering SREBP-1 at the nuclear membrane. However, mechanisms linking low-PC SREBP-1 activation to Lipin 1 appear distinct. First, SREBP-1 nuclear localization after PCTY1a or LPIN1 knockdown is nucleoplasmic and target genes are activated (see also Walker et al., 2011). Second, localization of endogenous Lipin 1 (Figures S5A and S5B; specificity antibody shown in Figure S5C), or a transfected Flag-Lipin 1 (Figure S5D) is not changed after PCTY1a knockdown. Final, fractionation experiments show similar levels of Lipin 1 isoforms in nuclear/ER and microsomal fractions in control and PCTY1a extracts (Figure S5E). Lipin 1 may also act in co-activation of β-oxidation genes (Reue and Zhang, 2008); however, these genes are not altered upon PCTY1a depletion (Figure S5F). Thus, mechanisms linking Lipin 1 and SREBP-1 in low PC appear distinct from mTORC1-mediated control of Lipin 1 localization or direct effects on gene regulation.

PCTY1a and LPIN1 Knockdown Affect ARF1 Activity

Our previous studies found that low-PC or disruptions in ARF1 GEF (Guanine Exchange Factor) GBF1 induced maturation of SREBP-1 (Walker et al., 2011), and our C. elegans screen also implicated arf-1.2 in SREBP-1 activation (Figures 1D, 1F, and 2A). To determine whether this mechanism extended to mammalian cells, we examined SREBP-1 localization and processing in HepG2 cells after ARF1 siRNA and found that nuclear accumulation increased and processed SREBP-1 appeared at higher levels (Figures 3H–3J). The validated hits from our C. elegans screen strongly implicated enzymes that alter PA or DAG levels in low-PC mediated processing of SREBP-1. Interestingly, both PA and DAG have been reported to affect ARF1 function, interfering with COP I transport (Asp et al., 2009; Fernández-Ulibarri et al., 2007; Mani-fava et al., 2001). Therefore, we asked whether knockdown of LPIN1 or PCTY1a affected levels of active, GTP-bound ARF1 and found that, strikingly, levels were diminished in both instances (Figures 4A–4C). As in our previous assays, double knockdown of LPIN1 and PCTY1a corrected defects (Figures 4D and 4E). Finally, we asked whether exogenous PA would phenocopy LPIN1 knockdown and rescue siPCTY1a effects on GTP-ARF levels and found partial rescue of active ARF1 (Figures 4F and 4G).

Cytosolic membrane levels of PA (Csaki et al., 2013), DAG (Sarri et al., 2011), or PC (Vance, 2014) could be affected in either LPIN1 or PCTY1a knockdown. Interestingly, ARF1 activity depends on membrane recruitment of the GTPase itself along with membrane association of the GAP (GTPase Activating Protein, ARFGAP1) and GEF (GBF1) (Bankaitis et al., 2012; Lev, 2006; Spang, 2002). In addition, DAG levels may be important for ARFGAP1 association (Antony et al., 1997; Bigay et al., 2003; Fernández-Ulibarri et al., 2007). Therefore, we compared association of ARF1, GBF1, or ARFGAP1 with microsomal membranes after PCTY1a or LPIN1 siRNA. Strikingly, GBF1 association was broadly diminished, while ARFGAP1 and ARF1 did not change (Figures 4H and 4I; Figures S5G and S5H). This suggests that local changes in membrane lipids that occur after PCTY1a or LPIN1 depletion may have profound effects on recruitment GBF1, leading to disruptions in ARF1 activity activating SREBP-1.
Figure 3. siRNA Knockdown of LPIN1 Is Similar to PCYT1 Depletion, Increasing SREBP-1 Nuclear Accumulation in Human Cells

(A–C) Confocal projections of immunostaining of endogenous SREBP-1 (A) or immunoblots (B and C) showing accumulation of the nuclear, processed form after siRNA of PCYT1a or LPIN1 in HepG2 cells. scr is the scrambled siRNA control, and yellow lines show cell boundaries. FL shows the full-length SREBP-1 precursor, and M is the mature, cleaved version.

(D and F) Confocal projections of HA-SREBP-1 levels after double knockdown of PCYT1 and LPIN1 in HepG2 cells (D) with quantitation in (F).

(E and G) Immunostaining and confocal projection of HepG2 cells shows increased nuclear accumulation of HA-SREBP-1 in cells treated with phosphatidic acid (PA). PA treatment decreases nuclear HA-SREBP-1 in siPCYT1a knockdown cells. Quantitation is in (G).

(H and I) Endogenous SREBP-1 localization is shown by confocal projections of immunostaining (H) or by immunoblot (I) after treatment of HepG2 cells with siRNA to ARF1. scr is scrambled control and yellow lines show cell outlines.

(J) Immunoblots show decrease in ARF1 after siRNA treatment. Number of cells are shown in parenthesis.

Results from Student’s t test shown by *p < 0.05, **p < 0.01, ***p < 0.005. Scale bars, 10 μm. See also Table S3 and Figures S4 and S5.
Figure 4. Knockdown of Mammalian PCTY1 or LPIN1 Decreases ARF1 Activity

(A) Pull-down assays specific for GTP-bound ARF1 show significant decreases after LPIN1 or PCTY1a knockdown.

(B and C) Densitometry showing an average of three experiments for siLPIN1 or five experiments for siPCTY1a is shown in (B) and (C), respectively.

(D and E) Comparison of active ARF1 levels shown in a representative immunoblot (D) or by densitometry from immunoblots of the double knockdown of PCYT1a and LPIN1 (E).

(F and G) Assessment of active ARF1 levels after PCYT1a siRNA or treatment with PA shown by immunoblot (F) or by densitometry (G).

(legend continued on next page)
Lipid storage requires coordinated production of fatty acids, phospholipids, TAGs, and other complex lipids (Horton et al., 2002). Many of these lipids also function in membrane structure or as signaling effectors, thus regulators of lipogenesis may respond to various signals. Our screen identified lpin-1, a PA phosphatase, (Takeuchi and Reue, 2009) as an activator of SBP-1/SREBP-1. Although enzymatic activities of lipins suggest straightforward synthetic functions, they have diverse roles and broad physiological effects (Csaki et al., 2013). For example, the fld mouse model of LPIN1 deficiency has metabolic defects including fatty liver and lipodystrophy (Péterfy et al., 2001) and the SREBP-1 transcriptional target SCD1 is up-regulated (Chen et al., 2008). Lipin 1 has also been reported to affect SREBP-1 activity through nuclear membrane sequestration (Peterson et al., 2011) or to act as a co-activator of β-oxidation genes with PPARγ (Finck et al., 2006); however, neither of these activities was altered after PCYT1/CCTa knockdown. In this context, we hypothesize Lipin 1-dependent effects on SREBP-1 occur when changes in membranes lipids alter membrane:protein interactions and activity of GBF-1 and ARF-1.

Changes in PA, DAG, or PC within subcellular membranes could have multiple effects. However, our data suggested a connection to ARFs. Notably, several studies have found that DAGs are important for ARF1 function or for recruiting ARFGAP (Antonny et al., 1997; Bigay et al., 2003; Fernández-Ulibarri et al., 2007; Randazzo and Kahn, 1994). However, we found that it was the ARF-GEF, GBF1, that bound less well to membranes after PCYT1 or LPIN1 knockdown. Loss of GBF1 activates the unfolded protein response and promotes cell death in mammalian cells (Citterio et al., 2008) and defects in development and Golgi integrity in C. elegans (Ackema et al., 2013). However, larval growth arrest after gbf-1(RNAi) in our screen precluded analysis. A recent study has suggested that GBF1 is recruited to membranes in response to increases in ARF-GDP (Quilty et al., 2014). We hypothesize that local changes in ratios of PA to PC species or decreases in DAG species, as seen in our studies of C. elegans microsomes, limit GBF1 recruitment and prevent generation of GTP-bound ARF1. In this instance, there could be insufficient DAG for recruitment or changes in curvature predicted by a PA-rich membrane could disrupt membrane:protein interactions.

Finally, we have found that co-depletion of PC biosynthetic enzymes and lpin-1/LPIN1 returns SBP-1/SREBP-1 function to basal levels and restores TAG levels. In this case, inhibiting the PA to DAG transition could limit both TAG and PC. We hypothesize this allows levels to rebalance, restoring ARF1 function and baseline SBP-1/SREBP-1 activity. Thus, our results suggest SBP-1/SREBP-1 transcriptional programs favoring lipogenesis may be stimulated when the balance of PA, DAG, or PC change within microsomal membranes.

DISCUSSION

Lipid Analysis

siRNA oligonucleotides were transfected for 48 hr with Lipofectamine RNAmax Transfection Reagent (Invitrogen, 13778100) (see Table S3 for specific siRNAs). Cells were incubated for 16 hr in 1% Lipoprotein Deficient Serum (LDS) (Biomedical Technologies, BT907) and 25 μg/ml ALLN (Calbiochem) for 30 min prior to harvesting. For studies with co-depletion of PCYT1a and LPIN1, equal amounts of each siRNA or targeting plus scrambled were transfected.

Cell Culture: Media and Stable Cell Lines

HepG2 cells (ATCC, HB-8065) were maintained in Minimum Essential Medium (Invitrogen) supplemented with 10% FBS (Invitrogen), glutamine (Invitrogen), and sodium pyruvate (Invitrogen). HepG2 cells stably expressing human SREBP-1c were generated by transfection of a pcMV SREBP-1c with an N-terminal hemagglutinin (HA) epitope tag (Origene, RC208404) and selection with Geneticin (Invitrogen).

Cell Culture: Transfection and siRNA

Total mRNA was extracted from with Tri-Reagent according to manufacturer’s protocol (Sigma). qRT-PCR conditions were identical to C. elegans studies. For qRT-PCR studies, graphs represent representative experiments selected from at least three biological replicates. Two-tailed Student’s t tests were used to compare significance between values with two technical replicates. Primer sequences are available upon request.
Lipid Vesicle Formation

Lipid vesicles containing 1,2-dipalmitoyl-sn-glycero-3-phosphate (PA) (Avanti Polar Lipids, 830885P) were prepared by water bath sonication as in Zhang et al. (2012) and added at final concentrations of 100 μM during the 16 hr incubation in 1% LDS.

Immunofluorescence and Oil Red O Staining

Transfected cells were fixed in 3.7% paraformaldehyde and permeabilized in 0.5% NP-40 prior to blocking in 5% fetal bovine serum/0.1% NP-40 and antibody treatment. For oil red O, cells were fixed with 3.7% paraformaldehyde, stained with oil red O (3 mg/ml in 60% isopropanol) for 10 min, and visualized. For quantification of antibody staining or lipid droplets, ten individual focal areas were photographed and then scored blind for high, medium, or low nuclear accumulation (antibody) or analyzed using BioPix IQ (2.1.4 droplets). Two-tailed Student’s t-tests were used to compare significance between the ten photographed areas and are representative of three biological replicates. All images within experimental sets were taken with a Leica SPE II at identical confocal gain settings and Adobe Photoshop was used for levels corrections.

Immunoblot Analysis

Immunoblots were analyzed using ImageJ software was performed. Graphs show average of at least three independent experiments with control values normalized to one.

Cell Fractionation: HepG2

Transfected cells were resuspended in cold homogenization buffer (Microsome purification kit, Biovision) and dounced and then cleared briefly. Supernatants were centrifuged at 80,000 × g for 45 min. Pellets were collected as microsomal fractions with the supernatant designated as the cytosolic fraction.

Active Arf1 Analysis

Levels of active Arf1 were analyzed using an Active Arf1 Pull-Down and Detection Kit (Thermo Scientific) following manufacturer’s instructions. Densitometry was performed by scanning of the film, and then analysis of pixel intensity was performed with ImageJ software. Graphs show average of at least three independent experiments with control values normalized to one.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, five figures, and three tables and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2016.05.086.

AUTHOR CONTRIBUTIONS

ACKNOWLEDGMENTS

We thank Drs. David Lambright (UMASS Medical School) and Stefan Taubert (University of British Columbia) for reading of the manuscript as well as Drs. Marian Walthou (UMASS Medical School), Victor Ambros (UMASS Medical School), Michael Czech (UMASS Medical School), Michelle Mondoux (College of the Holy Cross), and members of their labs for helpful discussion. We also thank Dr. Michael Lee (UMASS) for advice on bioinformatics. Some C. elegans strains were provided by the Caenorhabditis Genetics Center (CGC), which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440). This work was supported by the NIH through ROI DK084352 to A.K.W.

Received: September 21, 2015
Revised: April 29, 2016
Accepted: May 22, 2016
Published: June 16, 2016

REFERENCES

Cell Reports 16, 9–18, June 28, 2016 17

Supplemental Information

Cholesterol-Independent SREBP-1 Maturation
Is Linked to ARF1 Inactivation

Lorissa J. Smulan, Wei Ding, Elizaveta Freinkman, Sharvari Gujja, Yvonne J.K. Edwards, and Amy K. Walker
Supplemental Figure legends and methods

Figure S1: In C. elegans, lpin-1 and arf-1.2 RNAi increase pfat-7::GFP expression in control, but not sams-1(lof) animals. Related to Figure 1. (A) Schematic diagram showing conversion of glycerol-3-phosphate to triglyceride and additional functions of enzymes acting in this pathway. Quantitative RT-PCR (qRT-PCR) comparing expression of endogenous stearoyl-CoA desaturases fat-7, fat-5 and GFP after depletion of lpin-1 and arf-1.2 by RNAi in pfat-7::GFP (B) or sams-1(lof);pfat-7::GFP animals (C). Endogenous fat-7 is increased in wild type animals in response to lpin-1 or arf-1.2 RNAi, however, it does not change with plc-1 RNAi (D). (E) Quantitative RT-PCR (qRT-PCR) after depletion of acl-4 and acl-11 by RNAi in pfat-7::GFP. (F) Confocal projections show decreases in pfat-7::GFP after acl-4 or acl-11 RNAi. Confocal projection (G) or pixel intensity quantitation (H) of GFP::SBP-1 comparing nuclear and cytoplasmic levels after acl-4 or acl-11 RNAi. Error Bars show standard deviation. Results from student’s T test shown by *p<0.05, **p<0.01, ***p<0.005.

Figure S2: The AGPATs acl-4 and acl-11 are important for fat-7 expression and nuclear localization of GFP::SBP-1. Related to Figure 2. Confocal projections comparing GFP levels after RNAi of acl-4 and acl-11 in pfat-7::GFP (A) or sams-1(lof);pfat-7::GFP animals (C). Scale bar show 50 microns. Comparison of fat-5, fat-7 and GFP expression by quantitative RT-PCR (qRT-PCR) after depletion of acl-4 and acl-11 by RNAi in pfat-7::GFP (B), sams-
1(lof);pfat-7::GFP animals (D) or GFP::SBP-1 animals (F). Confocal projection (E) or pixel intensity quantitation (G) of GFP::SBP-1 comparing nuclear and cytoplasmic levels after acl-4 or acl-11 RNAi. Scale bar shows 25 microns. Error Bars show standard deviation. Results from student’s T test shown by *p<0.05, **p<0.01, ***p<0.005.

Figure S3: Lipidomic analysis of *C. elegans* microsomes. Related to **Figure 2.** (A) Fractionation of *C. elegans* extracts shows that Golgi or ER resident proteins are enriched in microsomal fractions. C is cytosolic, M is microsomal. Antibodies to SQV-8 and CYP-33E1 were developed and validated as part of the *C. elegans* Monoclonal antibody toolkit (Hadwiger et al., 2010). CNX-1 is the ortholog of Calnexin. (B) Principal component analysis of lipidomic analysis of *C. elegans* cytosolic or microsomal extracts in control, *sams-1* or *lpin-1(RNAi)* animals. Closed circles represent microsomal and open/contrast colored show cytosolic extracts. Numbers represent biological replicates. (C-G) Comparison of lipid species from *C. elegans* microsomes shows distributions of lipid species within each class on a log scale. Solid lines show average for the class and each dot represents a recovered lipid species within the class. Because lipid species distribution was non-parametric, the Wilcoxon test was used for statistical significance (see also **Table S2** (then tab for lipid class), where these graphs are represented alongside relevant statistics). **** represents p values of <0.001. (H, I) Comparison of PA species in microsomal extracts from control, *sams-1* and *lpin-1(RNAi)* animals. (For individualized statistics, see also **Table S2; tab: PA).
Error bars show standard deviation. Results from Paired T test shown by *p<0.05, **p<0.01, ***p<0.005.

Figure S4: siRNA knockdown of *LPIN1* is similar to *PCYT1* depletion, increasing SREBP-1 nuclear accumulation in human hepatoma cells.

Related to **Figure 3.** Immunoblot of HA-SREBP-1 after siRNA of *PCYT1* (A) or *LPIN1* (B) from HepG2 cells. FL is the full-length cytoplasmic precursor and M is the mature nuclear version. (C) qRT-PCR demonstrating levels of *PCYT1* or *LPIN1* mRNA after siRNA knockdown. (D) Immunoblots of Dignam extracts after *PCYT1a* (PC) or *LPIN1* (LP) knockdown showing levels of Lipin 1 or CCTa in cytosolic or nuclear/ER extracts. Calnexin shows loading and histone 3 shows nuclear fraction. (E) Confocal projections of immunostaining comparing nuclear and cytoplasmic levels of endogenous SREBP-1 after combined knockdown of *PCYT1* or *LPIN1*. Quantitation of nuclear localization is shown in (F). Confocal projections (G), quantitation by lipid droplet (LD) area (H) or number (I) after Oil Red staining in HepG2 cells with *PCYT1*, *LPIN1* or combined siRNA. Graphs show combined data from three experimental sets. Results from student’s T test shown by *p<0.05, **p<0.01, ***p<0.005 compared to scrambled (scr) conditions. Scale bars show 10 microns.

Figure S5: Localization and transcriptional activities of Lipin 1 are not changed by *PCYT1* siRNA.
Related to **Figure 3.** (A) Confocal projections of immunostaining to endogenous Lipin 1 in scrambled (scr) or *PCYT1* siRNA treated HepG2 cells with quantification of pixel intensity in (B). (C) Immunostaining of HepG2 cells for Lipin 1 after transfection with siRNA to scrambled (scr) controls or *LPIN1*. (D) Confocal projection of HepG2 cells transfected with a FLAG-LPIN1 construct and immunostained with anti-Flag antibodies. (E) Immunoblot of cells fractionated into Nuclear/ER, extracts (modified Dignam extract) (Andrews and Faller, 1991) probed with an antibody to Lipin 1. Histone 3 shows loading in nuclear fractions and Calnexin in fractions containing microsomes or ER. (F) qRT-PCR showing expression of β-oxidation gene mRNA after *PCTY1* siRNA. (G) Immunoblot of HepG2 cells transfected with siRNA to scrambled (scr), or *PCYT1a* and fractionated into microsomal or cytosolic fractions and probed with antibody to GBF1, ARFGAP1, and ARF1. β-actin shows loading and Calnexin in microsomal fractions. Results from student’s T test shown by *p<0.05, **p<0.01, ***p<0.005. Error bars show standard deviation. Scale bars show 10 microns.

Table S1: C. elegans screen for low-PC modulators of SBP-1 activity.

Related to **Figure 1.** Screen table shows genes analyzed (Columns A,B), description (C) and functional category (D), chromosomal location (E), RNAi source (F), average of 4 scores from -3 (lowest) to +3 (highest) in screen for *pfat-7::GFP* (G) and *sams-1; pfat-7::GFP* (H). Scores below -0.75 are marked in blue and represent Class 1 for *pfat-7::GFP* or Class 3 for *sams-1(lof); pfat-7::GFP*. Scores above 0.75 are marked in yellow and show Class 2 for *pfat-7::GFP*.
Columns I and J show if growth was inhibited in the RNAi where as K-M note validation of selected RNAi results.

Table S2: Related to Figure 2. Lipidomic profiling of *C. elegans* microsomes after *sams*-1 or *lpin*-1 RNAi. **Table S2A:** Tabs in spread sheet show lipid classes with more than 10 species. Total class calculations are based on sums of all lipid species in class. **First tab (lipid):** Area normalized to total lipid for each lipid species in class. Averages for each row (species) along with standard deviations are shown along with fold changes of *sams*-1 or *lpin*-1 RNAi to control. Paired T Tests corresponding to data used for fold change calculations are also shown. All calculations were performed with Graphpad prism. **Second tab (lipid.class):** This tab contains details of the Wilcoxon test are also shown for *sams*-1 or *lpin*-1 RNAi vs control or *sams*-1 vs *lpin*-1 samples. A box and whisker plot is also shown. All calculations were performed with Graphpad Prism. Sum totals for the species in each class are included, with fold changes to controls and 3-tailed TTests.

Table S3: Related to Figure 3. Strains, siRNA constructs and antibodies.
Supplemental Methods:

C. elegans fractionation

Young adult C. elegans were collected, washed in s-basal buffer then pelleted
animals were frozen in liquid N2 and ground to a powder in a cold mortar
(adapted from Kulas, et al). Next, the powder was resuspended in Tris Buffer I
(50mM Tris, pH 7.5, 0.15M KCl, 0.25M sucrose, 2mM EDTA, 0.5mM DTT, 2.5
ug/ml ALLN, Complete protease inhibitor cocktail (Roche)) and gently
homogenized with Dounce pestle B. Animals were further disrupted by bead-
beating for 30 seconds for 5 intervals with one volume Ø 0.5 mm glass beads.
Microsomes were purified by differential centrifugation (5 min at 3000g, 10
seconds at max in a microfuge at 4 °C, then 45 minutes at 80,000g) before
resuspension of the pelleted microsomes in Tris-buffer II (50mM Tris pH 7.5,
20% glycerol, 5mM EDTA, 0.5 mM DTT, and Complete protease inhibitor cocktail
(Roche)).

Lipidomics:

Lipid sample preparation

Chloroform was purchased from Sigma-Aldrich and was HPLC grade
(ethanol-stabilized). Acetonitrile was purchased from EMD Millipore and was
LC/MS Hypergrade. All other solvents were purchased from Fisher and were
Optima LC/MS grade.

Cytosolic and microsomal samples (~250 uL and 50 uL, respectively) were
supplemented with water up to a final volume of 300 ul, then mixed sequentially
with 600 uL methanol and 400 uL chloroform. After vortexing for 10 min. at 4°C, samples were centrifuged at 15,000xg for 10 min. at 4°C in a microcentrifuge. The bottom (lipid) fraction was collected and dried under vacuum. Dried lipid samples were typically dissolved in 50 ul 65:30:5 acetonitrile:isopropanol:water (v/v/v) and 5 ul was injected into the LC/MS, with separate injections for positive and negative ionization modes.

LC/MS experiments

Lipids were separated on an Ascentis Express C18 2.1 x 150 mm 2.7 µm column (Sigma-Aldrich, St. Louis, MO) connected to a Dionex UltiMate 3000 UPLC system and a QExactive benchtop orbitrap mass spectrometer (Thermo Fisher Scientific, San Jose, CA) equipped with a heated electrospray ionization (HESI) probe. Mobile phase A in the chromatographic method consisted of 60:40 water/acetonitrile in 10 mM ammonium formate (Sigma-Aldrich) and 0.1% formic acid (Pierce), and mobile phase B consisted of 90:10 isopropanol/acetonitrile, also with 10 mM ammonium formate and 0.1% formic acid. The chromatographic gradient was described previously (Hu et al., 2008). The column oven and autosampler tray were held at 55°C and 4°C, respectively. The MS instrument parameters were as described previously (Bird et al., 2011) and modified by (Ruzicka, J., McHale, K.J., and Peake, D.A. Data acquisition parameters optimization of quadrupole orbitrap for global lipidomics on LC-MS/MS time frame. Poster MP243 presented at 2014 American Society for Mass Spectrometry Annual Meeting, Baltimore, MD, June 15-20, 2014). The spray
voltage was set to 4.2 kV, and the heated capillary and the HESI were held at 320°C and 300°C, respectively. The S-lens RF level was set to 50, and the sheath and auxiliary gas were set to 35 and 3 units, respectively. These conditions were held constant for both positive and negative ionization mode acquisitions. External mass calibration was performed using the standard calibration mixture every 7 days.

MS spectra of lipids were acquired in full-scan / data-dependent MS² mode. For the full scan acquisition, the resolution was set to 70,000, the AGC target was 1e6, the maximum integration time was 50 msec, and the scan range was m/z = 133.4-2000. For data-dependent MS², the top 10 ions in each full scan were isolated with a 1.0 Da window, fragmented at a stepped normalized collision energy of 15, 25, and 35 units, and analyzed at a resolution of 17,500 with an AGC target of 2e5 and a maximum integration time of 100 msec. The underfill ratio was set to 0. The selection of the top 10 ions was subject to isotopic exclusion, a dynamic exclusion window of 5.0 sec, and an exclusion list of background ions based on a solvent blank.

Lipidomic data analysis

High-throughput identification and relative quantification of lipids was performed separately for positive and negative ionization mode data using LipidSearch software (Thermo Fisher Scientific / Mitsui Knowledge Industries) (Taguchi and Ishikawa, 2010; Yamada et al., 2013) using the default parameters for QExactive Product Search and Alignment. After alignment, raw peak areas
for all identified lipids were exported to Excel and filtered according to the following pre-determined quality control criteria: Rej ("Reject" parameter calculated by LipidSearch software) equal to 0; PQ ("Peak Quality" parameter calculated by LipidSearch software) greater than 0.85; CV (standard deviation / average peak area across triplicate injections of a representative [pooled] biological sample) below 0.4; R (linear correlation across a three-point dilution series of the representative [pooled] biological sample) greater than 0.9. Typically ~70% of identified lipids passed all four quality control criteria. Raw peak areas of the filtered lipids were added to generate a "total lipid signal" for each sample, and individual lipid peak areas were normalized to this total signal as a control for extraction efficiency and sample loading.

Bioinformatic analysis of liiomic data:

PCA script is as follows:

```r
countData <- read.table("pcaInput.txt",header=TRUE,row.names=1)
samples <- read.table("barcodes", header = TRUE, row.names =1)

dds <- DESeqDataSetFromMatrix(countData = countData,colData = samples,design = ~condition)

dds <- DESeq(dds)
.dds <- dds[ rowSums(counts(dds)) > 1, ]
```
PCA

rld <- rlog(dds)

plotPCA(rld, intgroup=c("condition")) #title(main="PCAPlot", outer=TRUE)

Statistical analysis, including normality plots, significance tests by the Wilcoxon or paired T test methods were performed in GraphPad Prism following the methodology for statistical analysis of lipidomics samples outlined in (Checa et al., 2015).

Cell Fractionation II: HepG2 Dignam extracts

Transfected HepG2 cells were lysed and fractionated according to Andrews and Faller (1991). Briefly, transfected cell pellets were resuspended in ice cold Buffer A (10 mM Hepes-KOH, pH 7.9, 1.5 mM MgCl₂, 10 mM KCl, 1 mM DTT, 2.5 µg/mL ALLN, and protease inhibitor cocktail), then suspensions were incubated on ice for 10 min. Nuclei were isolated by centrifugation for 10 seconds, and resulting supernatant was centrifuged at 80,000 rpm for 45 min to isolate membrane fractions. The resulting supernatant was classified as the cytosolic fraction. Nuclear and membrane fractions were resuspended in ice cold buffer C (20 mM
Hepes-KOH, pH 7.9, 25% glycerol, 420 mM NaCl, 1.5 mM MgCl$_2$, 0.2 mM EDTA, 1 mM DTT, 2.5 µg/mL ALLN, and protease inhibitor cocktail).

Cell Fractionation III: HepG2 microsome

Transfected cell pellets were resuspended in ice cold Buffer A (10 mM Hepes-KOH, pH 7.9, 1.5 mM MgCl$_2$, 10 mM KCl, 1 mM DTT, 2.5 µg/mL ALLN, and protease inhibitor cocktail), then incubated on ice for 10 min. Nuclei were isolated by centrifugation for 10 seconds, and resulting supernatant was centrifuged at 80,000 rpm for 45 min to isolate microsome fraction with the supernatant reserved as the cytosolic fraction. Nuclear and microsome pellets were resuspended in ice cold buffer C (20 mM Hepes-KOH, pH 7.9, 25% glycerol, 420 mM NaCl, 1.5 mM MgCl$_2$, 0.2 mM EDTA, 1 mM DTT, 2.5 µg/mL ALLN, and protease inhibitor cocktail).

Supplemental References:

